In our previous study, we reported a series of N-(9,10-anthraquinone-2-carbonyl) amino acid derivatives as novel inhibitors of xanthine oxidase (XO). Recognizing the suboptimal drug-like properties associated with the anthraquinone moiety, we embarked on a nonanthraquinone medicinal chemistry exploration in the current investigation. Through systematic structure-activity relationship (SAR) studies, we identified a series of 4-(isopentyloxy)-3-nitrobenzamide derivatives exhibiting excellent in vitro potency against XO.
View Article and Find Full Text PDFP-glycoprotein (P-gp) is an important factor leading to multidrug resistance (MDR) in cancer treatment. The co-administration of anticancer drugs and P-gp inhibitors has been a treatment strategy to overcome MDR. In recent years, tyrosine kinase inhibitor Lapatinib has been reported to reverse MDR through directly interacting with ABC transporters.
View Article and Find Full Text PDFThe occurrence and development of the tumor are very complex biological processes. In recent years, a large number of research data shows that CD73 is closely related to tumor growth and metastasis. It has been confirmed that the cascade hydrolysis of extracellular ATP to adenosine is one of the most important immunosuppressive regulatory pathways in the tumor microenvironment.
View Article and Find Full Text PDFCorynoxeine, a natural active alkaloid found in Genus Uncaria, has been reported to have anti-depressant effects. In this study, a sensitive and efficient ultra-high performance liquid chromatography tandem mass spectrometry method for quantifying corynoxeine in rat plasma and tissues was established, validated and applied to investigate the pharmacokinetics and tissue distribution differences between normal rats and chronic unpredictable mild stress (CUMS)-induced depression model rats following oral administration. All bio-samples were prepared by methanol protein precipitation method with theophylline as internal standard (IS).
View Article and Find Full Text PDFOur previous studies suggested that N-phenyl aromatic amides are a class of promising xanthine oxidase (XO) inhibitor chemotypes. In this effort, several series of N-phenyl aromatic amide derivatives (4a-h, 5-9, 12i-w, 13n, 13o, 13r, 13s, 13t and 13u) were designed and synthesized to carry out an extensive structure-activity relationship (SAR). The investigation provided some valuable SAR information and identified N-(3-(1H-imidazol-1-yl)-4-((2-methylbenzyl)oxy)phenyl)-1H-imidazole-4-carboxamide (12r, IC = 0.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2023
Our previous work firstly reported that (E)-2-styrylanthracene-9,10-dione is a novel fluorescent core (EK01) with the ability of specific mitochondria imaging. In this effort, we mainly focused our attention on the structure-photophysical property relationship and application in cells imaging of this new fluorescent chemotype. A series of the structural derivatives (TZ series) were designed and synthesized by introducing some substituents onto the 2-styryl moiety.
View Article and Find Full Text PDFXanthine oxidase (XO) inhibitors are widely used in the control of serum uric acid levels in the clinical management of gout. Our continuous efforts in searching novel amide-based XO inhibitors culminated in the identification of N-(4-((3-cyanobenzyl)oxy)-3-(1H-tetrazol-1-yl)phenyl)isonicotinamide (TS10), which exhibited comparable in vitro inhibition to that of topiroxostat (TS10, IC = 0.031 μM; topiroxostat, IC = 0.
View Article and Find Full Text PDFXanthine oxidase (XO) is a flavoprotein that exists in various organisms and can catalyze the uric acid formation in the human body. Based on the amide framework of N-(4-((3-cyanobenzyl)oxy)-3-(1H-tetrazol-1-yl)phenyl)isonicotinamide (compound 1) reported in our previous work, a series of N-(4-alkoxy-3-(1H-tetrazol-1-yl)phenyl) heterocyclic aromatic amide derivatives were designed, synthesized and evaluated as novel amide-based XO inhibitors. Structure-activity relationship campaign identified the most promising compound g25 (IC = 0.
View Article and Find Full Text PDFA series of 4-(phenoxymethyl)-1H-1,2,3-triazole derivatives were designed, synthesized, and evaluated for their xanthine oxidase (XO) inhibitory activities. Among these compounds, 9m emerged as the most effective XO inhibitor with an IC value of 0.70 μM, which was approximately 14-fold more potent than allopurinol.
View Article and Find Full Text PDFOur previous work identified a promising isonicotinamide based xanthine oxidase (XO) inhibitor, N-(3-cyano-4-((2-cyanobenzyl)oxy)phenyl)isonicotinamide (1), and concluded that amide is an effective linker in exploring the XO inhibitor chemical space that is completely different from the five-membered ring framework of febuxostat and topiroxostat. Indole, an endogenous bioactive substance and a popular drug construction fragment, was involved in the structural optimization campaign of the present effort. After the installation of some functional groups, N-(1-alkyl-3-cyano-1H-indol-5-yl) was generated and employed to mend the missing H-bond interaction between the 3'-cyano of 1 and Asn768 residue of XO by shortening their distance.
View Article and Find Full Text PDFOur previous work demonstrated that amide is an efficient linker to explore chemical space of xanthine oxidase (XO) inhibitors that are entirely different from febuxostat and topiroxostat. In this effort, with 3-cyano-1H-indol-5-yl as a key moiety, two series of amide-based XO inhibitors, N-(3-cyano-1H-indol-5-yl)isonicotinamides (2a-w) and N-(3-cyano-1H-indol-5-yl)-1H-benzo[d]imidazole-5-carboxamides (3a-i), were designed and synthesized. The structure-activity relationship investigation identified N-(3-cyano-1-cyclopentyl-1H-indol-5-yl)-1H-benzo[d]imidazole-5-carboxamide (3i, IC = 0.
View Article and Find Full Text PDFTo further explore the research of novel PARP-1 inhibitors, we designed and synthesized a series of novel amide PARP-1 inhibitors based on our previous research. Most compounds displayed certain antitumor activities against four tumor cell lines (A549, HepG2, HCT-116, and MCF-7). Specifically, the candidate compound R8e possessed strong anti-proliferative potency toward A549 cells with the IC value of 2.
View Article and Find Full Text PDFThe molecular chaperone heat shock protein 90 (Hsp90) is a promising target for cancer therapy. Natural product aconitine is a potential Hsp90 inhibitor reported in our previous work. In this study, we designed and synthesized a series of 2-((1-phenyl-1H-1,2,3-triazol-4-yl)methyl)-2-azabicyclo[3.
View Article and Find Full Text PDFIntroduction: The development of a new type of Thymidylate synthase (TS) inhibitor that could inhibit cancer cells' proliferation and anti-angiogenesis is of great significance for cancer's clinical treatment.
Objectives: Our research hopes to develop a TS inhibitor that is more effective than the current first-line clinical treatment of pemetrexed (PTX) and provide a new reference for the clinical treatment of non-small cell lung cancer (NSCLC).
Methods: We obtained a series of novel TS inhibitors by chemical synthesis.
Src plays a crucial role in many signaling pathways and contributes to a variety of cancers. Therefore, Src has long been considered an attractive drug target in oncology. However, the development of Src inhibitors with selectivity and novelty has been challenging.
View Article and Find Full Text PDFInhibitors of poly (ADP-ribose) polymerase-1 (PARP-1) have shown to be promising in clinical trials against cancer, and many researchers are interested in the development of new PARP-1 inhibitors. Herein, we designed and synthesized 44 novel erythrina derivatives bearing a 1,2,3-triazole moiety as PARP-1 inhibitors. MTT assay results indicated that compound 10b had the most potent anti-proliferative activity against A549 cells among five cancer cells.
View Article and Find Full Text PDFA series of homoerythrina alkaloid derivatives containing a 1,2,3-triazole moiety as PARP-1 inhibitors were designed and synthesized. And their anti-proliferative activity was further evaluated. Compound 10n had excellent activity to inhibit proliferation of A549 cells (IC = 1.
View Article and Find Full Text PDFIn our previous study, we reported a series of N-phenylisonicotinamide derivatives as novel xanthine oxidase (XO) inhibitors and identified N-(3-cyano-4-((2-cyanobenzyl)oxy)phenyl)isonicotinamide (compound 1) as the most potent one with an IC value of 0.312 μM. To further optimize the structure and improve the potency, a structure-based drug design (SBDD) strategy was performed to construct the missing H-bond between the small molecule and the Asn768 residue of XO.
View Article and Find Full Text PDFThymidylate synthase (TS) is a hot target for tumor chemotherapy, and its inhibitors are an essential direction for anti-tumor drug research. To our knowledge, currently, there are no reported thymidylate synthase inhibitors that could inhibit cancer cell migration. Therefore, for optimal therapeutic purposes, combines our previous reports and findings, we hope to obtain a multi-effects inhibitor.
View Article and Find Full Text PDFBackground: Topiroxostat is an excellent xanthine oxidase (XO) inhibitor, possessing a specific 3,5-diaryl-1,2,4-triazole framework.
Objective: The present work was aimed to investigate the preliminary structure-activity relationship (SAR) of 2-cyanopyridine-4-yl-like fragments of topiroxostat analogues.
Methods: A series of 5-benzyl-3-pyridyl-1H-1,2,4-triazole derivatives (1a-j and 2a-j) were designed and synthesized by replacement of the 2-cyanopyridine-4-yl moiety with substituted benzyl groups.
The Inhibition of cellular nucleotide metabolism to promote apoptosis is a key principle of cancer therapy. Thymidylate synthase (TS) is a key rate-limiting enzyme in the initiation of DNA synthesis in cell. Here, we presented two types of thymidylate synthase inhibitors, and, the key pharmacological properties of these two types of thymidylate synthase inhibitor were extracted and combined to design new compounds with inhibitory activity.
View Article and Find Full Text PDFRucaparib and PJ34 were used as the structural model for the design of novel 5H-dibenzo[b,e]azepine-6,11-dione derivatives containing 1,3,4-oxadiazole units. And target compounds were successfully synthesized through a 3-step synthetic strategy. All target compounds were screened for their anti-proliferative effects against OVCAR-3 cell line.
View Article and Find Full Text PDFA series of N-(9,10-anthraquinone-2-carbonyl)amino acid derivatives (1a-j) was designed and synthesized as novel xanthine oxidase inhibitors. Among them, the L/D-phenylalanine derivatives (1d and 1i) and the L/D-tryptophan derivatives (1e and 1j) were effective with micromolar level potency. In particular, the L-phenylalanine derivative 1d (IC = 3.
View Article and Find Full Text PDFA series of N-(4-alkoxy-3-cyanophenyl)isonicotinamide/nicotinamide derivatives was designed, synthesized and evaluated for inhibitory potency in vitro against xanthine oxidase. The isonicotinamide series was considerably more effective than the nicotinamide series. SARs analysis revealed that the isonicotinoyl moiety played a significant role on the inhibition and that a benzyl ether tail (e.
View Article and Find Full Text PDFA series of 5-(4-(pyridin-4-yl)-1H-1,2,3-triazol-1-yl)benzonitrile derivatives (1a-p) was designed, synthesized, and identified as xanthine oxidase inhibitors with micromolar level potencies. Among them, the most promising compounds 1j and 1k were obtained with IC values of 8.1 and 6.
View Article and Find Full Text PDF