The development of surface modification techniques has brought about a major paradigm shift in the clinical applications of bone tissue regeneration. Biofabrication strategies enable the creation of scaffolds with specific microstructural environments and biological components. Lithium (Li) has been reported to exhibit anti-inflammatory, osteogenic, and chondrogenic properties by promoting several intracellular signaling pathways.
View Article and Find Full Text PDFCorrection for 'Additive manufacturing of barium-doped calcium silicate/poly-ε-caprolactone scaffolds to activate CaSR and AKT signalling and osteogenic differentiation of mesenchymal stem cells' by Yung-Cheng Chiu , , 2023, , 4666-4676, https://doi.org/10.1039/D3TB00208J.
View Article and Find Full Text PDF3D-printed scaffolds are suitable for patient-specific implant preparation for bone regeneration in large-scale critical bone defects. In addition, these scaffolds should have mechanical and biological properties similar to those of natural bone tissue. In this study, 3D-printed barium-doped calcium silicate (BaCS)/poly-ε-caprolactone (PCL) composite scaffolds were fabricated as an alternative strategy for bone tissue engineering to achieve appropriate physicochemical characteristics and stimulate osteogenesis.
View Article and Find Full Text PDFNumerous studies have demonstrated that biological compounds and trace elements such as dopamine (DA) and copper ions (Cu) could be modified onto the surfaces of scaffolds using a one-step immersion process which is simple, inexpensive and, most importantly, non-cytotoxic. The development and emergence of 3D printing technologies such as selective laser melting (SLM) have also made it possible for us to fabricate bone scaffolds with precise structural designs using metallic compounds. In this study, we fabricated porous titanium scaffolds (Ti) using SLM and modified the surface of Ti with polydopamine (PDA) and Cu.
View Article and Find Full Text PDFNumerous studies have demonstrated that calcium silicate (CS) can be doped with various trace metal elements such as strontium (Sr) or magnesium (Mg). These studies have confirmed that such modifications promote bone regeneration. However, the development and emergence of 3D printing have further made it possible to fabricate bone grafts with precise structural designs using multi-bioceramics so as to better suit specific clinical requirements.
View Article and Find Full Text PDFMineral trioxide aggregate (MTA) is a common biomaterial used in endodontics regeneration due to its antibacterial properties, good biocompatibility and high bioactivity. Surface modification technology allows us to endow biomaterials with the necessary biological targets for activation of specific downstream functions such as promoting angiogenesis and osteogenesis. In this study, we used caffeic acid (CA)-coated MTA/polycaprolactone (PCL) composites and fabricated 3D scaffolds to evaluate the influence on the physicochemical and biological aspects of CA-coated MTA scaffolds.
View Article and Find Full Text PDF