Publications by authors named "Ting-Yim Lee"

The complexity of CT perfusion (CTP) acquisition protocols may limit the availability of target mismatch assessment at resource-limited hospitals. We compared CTP mismatch with a mismatch surrogate generated from a simplified dynamic imaging sequence comprising widely available non-contrast CT (NCCT) and multiphase CT angiography (mCTA). Consecutive patients with anterior circulation acute ischemic stroke who received NCCT, mCTA, and CTP were retrospectively included in this study.

View Article and Find Full Text PDF

CTP is an important diagnostic tool in managing patients with acute ischemic stroke, but challenges persist in the agreement of stroke lesion volumes and ischemic core-penumbra mismatch profiles determined with different CTP post-processing software. We investigated a systematic method of calibrating CTP stroke lesion thresholds between deconvolution algorithms using a digital perfusion phantom to improve inter-software agreement of mismatch profiles. Deconvolution-estimated cerebral blood flow (CBF) and Tmax was compared to the phantom ground truth via linear regression for one model-independent and two model-based deconvolution algorithms.

View Article and Find Full Text PDF

Introduction: The reliance on glycolytic metabolism is a hallmark of tumor metabolism. Excess acid and protons are produced, leading to an acidic tumor environment. Therefore, we explored the relationship between the tumor glycolytic metabolism and tissue pH by comparing F-fluorodeoxyglucose positron emission tomography (FDG-PET) and hyperpolarized [1-C]pyruvate MR spectroscopy imaging (MRSI) to chemical exchange saturation transfer (CEST) MRI measurements of tumor pH.

View Article and Find Full Text PDF

Objectives: Integration of CT perfusion (CTP) with requisite non-contrast CT and CT angiography (CTA) stroke imaging may allow efficient stroke lesion volume measurement. Using surrogate images from CTP, we simulated the feasibility of using multiphase CTA (mCTA) to generate perfusion maps and assess target mismatch profiles.

Materials And Methods: Patients with acute ischemic stroke who received admission CTP were included in this study.

View Article and Find Full Text PDF

Purpose: Tumor hypoxia is associated with poor response to radiation (RT). We previously discovered a novel mechanism of metformin: enhancing tumor RT response by decreasing tumor hypoxia. We hypothesized that metformin would decrease tumor hypoxia and improve cervical cancer response to RT.

View Article and Find Full Text PDF

Background: Targeted radionuclide therapy (TRT) is a fast-growing field garnering much interest, with several clinical trials currently underway, that has a steady increase in development of treatment techniques. Unfortunately, within the field and many clinical trials, the dosimetry calculation techniques used remain relatively simple, often using a mix of S-value calculations and kernel convolutions.

Purpose: The common TRT calculation techniques, although very quick, can often ignore important aspects of patient anatomy and radionuclide distribution, as well as the interplay there-in.

View Article and Find Full Text PDF

Advances in imaging have changed prostate radiotherapy through improved biochemical control from focal boost and improved detection of recurrence. These advances are reviewed in the context of prostate stereotactic body radiation therapy (SBRT) and the ARGOS/CLIMBER trial protocol. ARGOS/CLIMBER will evaluate 1) the safety and feasibility of SBRT with focal boost guided by multiparametric MRI (mpMRI) and F-PSMA-1007 PET and 2) imaging and laboratory biomarkers for response to SBRT.

View Article and Find Full Text PDF

Importance: Accurate monitoring of core body temperature is integral to targeted temperature management (TTM) following cardiac arrest. However, there are no reliable non-invasive methods for monitoring temperature during TTM.

Objectives: We compared the accuracy and precision of a novel non-invasive Zero-Heat-Flux Thermometer (SpotOn™) to a standard invasive esophageal probe in a cohort of patients undergoing TTM post-cardiac arrest.

View Article and Find Full Text PDF

Purpose: The aortic time-enhancement curve obtained from dynamic CT myocardial perfusion imaging can be used to derive the cardiac output (CO) index based on the indicator dilution principle. The objective of this study was to investigate the effect of cardiac phase at which CT myocardial perfusion imaging is triggered on the CO index measurement with this approach. Methods: Electrocardiogram (ECG) gated myocardial perfusion imaging was performed on farm pigs with consecutive cardiac axial scans using a large-coverage CT scanner (Revolution, GE Healthcare) after intravenous contrast administration.

View Article and Find Full Text PDF

For multicenter clinical studies, characterizing the robustness of image-derived radiomics features is essential. Features calculated on PET images have been shown to be very sensitive to image noise. The purpose of this work was to investigate the efficacy of a relatively simple harmonization strategy on feature robustness and agreement.

View Article and Find Full Text PDF

Rationale And Objectives: Radiation dose associated with computed tomography (CT) perfusion (CTP) may discourage its use despite its added diagnostic benefit in quantifying ischemic lesion volume. Sparse-view CT reduces scan dose by acquiring fewer X-ray projections per gantry rotation but is contaminated by streaking artifacts using filtered back projection (FBP). We investigated the achievable dose reduction by sparse-view CTP with FBP without affecting CTP lesion volume estimations.

View Article and Find Full Text PDF

Low birth weight (LBW) offspring are at increased risk for developing insulin resistance, a key precursor in metabolic syndrome and type 2 diabetes mellitus. Altered skeletal muscle vasculature, extracellular matrix, amino acid and mitochondrial lipid metabolism, and insulin signaling are implicated in this pathogenesis. Using uteroplacental insufficiency (UPI) to induce intrauterine growth restriction (IUGR) and LBW in the guinea pig, we investigated the relationship between UPI-induced IUGR/LBW and later life skeletal muscle arteriole density, fibrosis, amino acid and mitochondrial lipid metabolism, markers of insulin signaling and glucose uptake, and how a postnatal high-fat, high-sugar "Western" diet (WD) modulates these changes.

View Article and Find Full Text PDF

Purpose: Localized prostate cancer (PCa) in patients is characterized by a dominant focus in the gland (dominant intraprostatic lesion, DIL). Accurate DIL identification may enable more accurate diagnosis and therapy through more precise targeting of biopsy, radiotherapy and focal ablative therapies. The goal of this study is to validate the performance of [F]DCFPyL PET and CT perfusion (CTP) for detecting and localizing DIL against digital histopathological images.

View Article and Find Full Text PDF

Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a rare, life-threatening disorder of systemic microthrombosis and organ ischemia. The etiology of chronic cerebrovascular outcomes in iTTP survivors is largely unknown. In this pilot study, we measured blood-brain barrier (BBB) permeability in patients with iTTP at the start of remission and 6 months later.

View Article and Find Full Text PDF

Purpose: For lung and liver tumors requiring radiotherapy, motion artifacts are common in 4D-CT images due to the small axial field-of-view (aFOV) of conventional CT scanners. This may negatively impact contouring and dose calculation accuracy and could lead to a geographic miss during treatment. Recent advancements in volumetric CT (vCT) enable an aFOV up to 160 mm in a single rotation, which may reduce motion artifacts.

View Article and Find Full Text PDF

Introduction: The liver receives gut-derived endotoxin via the portal vein, clearing it before it enters systemic circulation. Hemodialysis negatively impacts the perfusion and function of multiple organs systems. Dialysate cooling reduces hemodialysis-induced circulatory stress and protects organs from ischemic injury.

View Article and Find Full Text PDF

Delayed diagnosis of dynamic carpal instability often occurs because early changes in bone alignment and movement are difficult to detect and manifest mainly during a dynamic/functional task. Current diagnostic tools are only able to examine the carpal bones under static or sequential-static conditions. Four-dimensional (three dimensions + time) computed tomography (4DCT) enables quantification of carpal mechanics through 3D volume sequences of the wrist in motion.

View Article and Find Full Text PDF

Purpose: Chemical exchange saturation transfer MRI using an infusion of glucose (glucoCEST) is sensitive to the distribution of glucose in vivo; however, whether glucoCEST is more related to perfusion or glycolysis is still debatable. We compared glucoCEST to computed tomography perfusion (CTP), [F] fluorodeoxyglucose positron emission tomography (FDG-PET), and hyperpolarized [1-C] pyruvate magnetic resonance spectroscopy imaging (MRSI) in a C6 rat model of glioma to determine if glucoCEST is more strongly correlated with measurements of perfusion or glycolysis.

Methods: 10 C6 glioma cells were implanted in Wistar rat brains (n = 11).

View Article and Find Full Text PDF

Lung cancer is the most common cause of cancer-related death in both men and women. Radiation therapy is widely used for lung cancer treatment; however, respiratory motion presents challenges that can compromise the accuracy and/or effectiveness of radiation treatment. Respiratory motion compensation using biomechanical modeling is a common approach used to address this challenge.

View Article and Find Full Text PDF

Background: Stereotactic ablative radiation therapy (SABR) is effective in treating inoperable stage I non-small cell lung cancer (NSCLC), but imaging assessment of response after SABR is difficult. This prospective study aimed to develop a predictive model for true pathologic complete response (pCR) to SABR using imaging-based biomarkers from dynamic [F]FDG-PET and CT Perfusion (CTP).

Methods: Twenty-six patients with early-stage NSCLC treated with SABR followed by surgical resection were included, as a pre-specified secondary analysis of a larger study.

View Article and Find Full Text PDF

Quantitative measurement of lung perfusion is a promising tool to evaluate lung pathophysiology as well as to assess disease severity and monitor treatment. However, this novel technique has not been adopted clinically due to various technical and physiological challenges; and it is still in the early developmental phase where the correlation between lung pathophysiology and perfusion maps is being explored. The purpose of this research work is to quantify the impact of pulmonary artery occlusion on lung perfusion indices using lung dynamic perfusion CT (DPCT).

View Article and Find Full Text PDF

Purpose: Identification of the dominant intraprostatic lesion(s) (DILs) can facilitate diagnosis and treatment by targeting biologically significant intra-prostatic foci. A PSMA ligand, [F]DCFPyL (2-(3-{1-carboxy-5-[(6-[F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid), is better than choline-based [F]FCH (fluorocholine) in detecting and localizing DIL because of higher tumour contrast, particularly when imaging is delayed to 1 h post-injection. The goal of this study was to investigate whether the different imaging performance of [F]FCH and [F]DCFPyL can be explained by their kinetic behaviour in prostate cancer (PCa) and to evaluate whether DIL can be accurately detected and localized using a short duration dynamic positron emission tomography (PET).

View Article and Find Full Text PDF