The goal of this study was to investigate how the electron-donating capability around the lower valent metal ion and the electron-accepting capability of the higher valent metal ion influence metal to metal charge transfer (MMCT) properties in mixed-valence complexes. A series of trinuclear ruthenium complexes represented as [Ru(ap-4-Me)(CHCOO)NCRuCpMe(dppe)][PF] (CpMe = polymethylcyclopentadienyl, = 0, 1, and 5; and dppe = 1, 2-bis(diphenylphosphino)ethane, ap-4-Me = 2-anilino-4-methylpyridine) and their one-electron oxidized products were synthesized and fully characterized. The UV-vis-NIR spectra confirmed that as the electron donor character of the CpMe(dppe)RuCN fragment enhanced or the electron-accepting capability of the higher valent diruthenium cluster increased, the Ru → RuV2 or RuVI2 Ru MMCT bands shifted to lower energies, which was supported by TDDFT calculations.
View Article and Find Full Text PDFIn order to investigate the influence of the auxiliary ligand of the cyanidometal bridge on metal to metal charge transfer (MMCT) in cyanidometal-bridged complexes, two groups of heterotrimetallic cyanidometal-bridged complexes, trans-[Cp*(dppe)Fe-NC-Ru(L)2-CN-Fe(dppe)Cp*][PF6]n (L = bpy, 1(PF6)n; L = 4,4'-dmbpy, 2(PF6)n; n = 2, 3, 4) (Cp* = 1,2,3,4,5-pentamethylcyclopentadiene, dppe = 1,2-bis(diphenylphosphino)ethane, bpy = 2,2'-bipyridine, 4,4'-dmbpy = 4,4'-dimethyl-2,2'-bipyridyl) were synthesized and fully characterized. The MMCT of the one-electron oxidation mixed valence complexes is mainly attributed to RuII and FeII → FeIII MMCT transitions, and the MMCT of the two-electron oxidation complexes is mainly attributed to RuII → FeIII MMCT transitions. The energy of the MMCT of the four complexes decreases with the increase of the electron donating ability of the auxiliary ligand of the cyanidometal bridge.
View Article and Find Full Text PDF