Objective: Combination therapy for cancer is more effective than using only standard chemo- or radiotherapy. Our previous results showed that dendritic cell-activated α-fetoprotein (AFP)-specific T-cells inhibit tumor in vitro and in vivo. In this study, we focused on antitumor function of CD8(+) T-cells combined with or without JAK2 inhibitor.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) can serve as a vehicle for gene therapy. Angiopoietin-1 (ANGPT1) plays an important role in the regulation of endothelial cell survival, vascular stabilization, and angiogenesis. We hypothesized that ANGPT1 gene-modified MSCs might be a potential therapeutic approach for severe acute pancreatitis (SAP) in rats.
View Article and Find Full Text PDFIt is well established that the interaction between cancer cells and microenvironment has a critical role in tumor development, but the roles of miRNAs in this interaction are rarely known. Here, we have shown that miR-106b is up-regulated in cancer associated fibroblasts compared with normal fibroblasts established from patients with gastric cancer, the expression level of miR-106b is associated with poor prognosis of patients, and CAFs with down-regulated miR-106b could significantly inhibit gastric cancer cell migration and invasion by targeting PTEN. Taken together, these data suggest that miR-106b might be a novel candidate target for the treatment of gastric cancer.
View Article and Find Full Text PDFBackground: MicroRNAs are a class of small non-coding RNAs that play an important role in various human tumor initiation and progression by regulating gene expression negatively. The aim of this study was to investigate the effect of miR-214 on cell proliferation, migration and invasion, as well as the functional connection between miR-214 and PTEN in gastric cancer.
Methods: miR-214 and PTEN expression was determined in gastric cancer and matched normal tissues, and human gastric cancer cell lines by quantitative real-time PCR.