Publications by authors named "Ting-Shan Mo"

Dynamic control of motion at the molecular level is a core issue in promoting the bottom-up programmable modulation of sophisticated self-organized superstructures. Self-assembled artificial nanoarchitectures through subtle noncovalent interactions are indispensable for diverse applications. Here, the active solar renewable energy is used to harness cholesteric liquid crystal (CLC) superstructure devices via delicate control of the dynamic equilibrium between the concentrations of molecular motor molecules with opposite handedness.

View Article and Find Full Text PDF

Self-organized periodic micro/nanostructures caused by stimulus-responsive structural deformation often occur in anisotropic self-assembled supramolecular systems (e.g., liquid crystal systems).

View Article and Find Full Text PDF

This study applies a low-cost solvothermal method to synthesize all-inorganic (lead-free cesium tin halide) perovskite quantum dots (AIPQDs) and to fabricate AIPQD-doped lasers with cholesteric liquid crystal (CLC) lasing cavities. The lasers present highly qualified lasing features of low threshold (150 nJ/pulse) and narrow line width (0.20 nm) that are attributed to the conjunction of the suppression of photoluminescence (PL) loss caused by the quantum confinement of AIPQDs and the amplification of PL caused by the band-edge effect of the CLC-distributed feedback resonator.

View Article and Find Full Text PDF

This work successfully develops a largely-gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability in nearly entire visible region within a wide blue phase (BP) temperature range including room temperature. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentrations and afterwards through UV-curing. This gradient-pitched PSBP can show a rainbow-like reflection appearance in which the peak wavelength of the PBG can be spatially tuned from the blue to the red regions at room temperature.

View Article and Find Full Text PDF

This work investigates the performance evolution of color cone lasing emissions (CCLEs) based on dye-doped cholesteric liquid crystal (DDCLC) cells at different fabrication conditions. Experimental results show that the energy threshold (E(th)) and relative slope efficiency (η(s)) of the lasing signal emitted at each cone angle (0°-35°) in the CCLE decreases and increases, respectively, when the waiting time in a homogenously rubbed aligned DDCLC cell is increased from 0 hr to 216 hr (9 days). This result occurs because defect lines gradually shrink with the anchoring of the surface alignment when the waiting time is increased.

View Article and Find Full Text PDF

This study demonstrates for the first time a continuously tunable photonic bandgap (PBG) of wide spectral range based on a blue phase (BP) wedge cell. A continuously shifting PBG of the BP wedge cell occurs due to the thickness gradient of the wedge cell at a fixed temperature. The wedge cell provides a gradient of boundary force on the LCs and thus forms a distribution of BP crystal structure with a gradient lattice.

View Article and Find Full Text PDF

This work demonstrates the feasibility of a novel photosensitive and all-optically fast-controllable photonic bandgap (PBG) device based on a dye-doped blue phase (DDBP), embedded with a low-concentration azobenzene liquid crystal (azo-LC). PBG of the DDBP can be reversibly fast-tuned off and on with the successive illumination of a weak UV and green beams. UV irradiation can transform the trans azo-LCs into bend cis isomers, which can easily disturb LCs at the boundary between the double twisting cylinders (DTCs) and the disclinations, and, then, quickly destabilize BPI to become a BPIII-like texture with randomly-oriented DTCs.

View Article and Find Full Text PDF

This paper presents an optically wavelength-tunable and intensity-switchable dye-doped cholesteric liquid crystal (DDCLC) spherical microlaser with an azo-chiral dopant. Experimental results present that two functions of optical control - tunability of lasing wavelength and switchability of lasing intensity - can be obtained for this spherical microlaser at low and high intensity regimes of non-polarized UV irradiation, respectively. If the DDCLC microdroplet is subjected to weak UV irradiation, azo-chiral molecules may transform to the bent cis state at a low concentration rate.

View Article and Find Full Text PDF

This study demonstrates a tunable Fresnel lens in an azo-dye-doped liquid crystal (ADDLC) film using an interference technique. One Fresnel-patterned green beam using a Sagnac interferometer irradiated the UV-illuminated ADDLC cell, yielding a concentric zone plate distribution with homeotropic and isotropic structures in bright and dark regions of the green interference pattern. The proposed Fresnel lens is polarization independent, focus tunable, and the focusing efficiency of the device can be optically controlled.

View Article and Find Full Text PDF

This investigation elucidates for the first time electrically controllable random lasers below the threshold voltage in dye-doped liquid crystal (DDLC) cells with and without adding an azo-dye. Experimental results show that the lasing intensities and the energy thresholds of the random lasers can be decreased and increased, respectively, by increasing the applied voltage below the Fréedericksz transition threshold. The below-threshold-electric-controllability of the random lasers is attributable to the effective decrease of the spatial fluctuation of the orientational order and thus of the dielectric tensor of LCs by increasing the electric-field-aligned order of LCs below the threshold, thereby increasing the diffusion constant and decreasing the scattering strength of the fluorescence photons in their recurrent multiple scattering.

View Article and Find Full Text PDF

This study investigates, for the first time, an all-optically controllable random laser based on a dye-doped liquid crystal (DDLC) cell added with a photoisomerizable dye. Experimental results indicate that the lasing intensity of this random laser can be all-optically controlled to decrease and increase sequentially with a two-step exposure of one UV and then one green beam. All-optically reversible controllability of the random lasing emission is attributed to the isothermal nematic(N)-->isotropic(I) and I-->N phase transitions for LCs due to the UV-beam-induced trans-->cis and green-beam-induced cis-->trans back isomerizations of the photoisomerizable dye, respectively.

View Article and Find Full Text PDF

This study investigates, for the first time, a photoerasable and photorewritable spatially-tunable laser using a dye-doped cholesteric liquid crystal (DDCLC) with a photoisomerizable chiral dopant (AzoM). UV illumination via a photomask with a transmittance-gradient can create a pitch gradient in the cell such that the lasing wavelength can be spatially tuned over a wide band of 134nm. The pitch gradient is generated by the UV-irradiation-induced gradient of the cis-AzoM concentration and therefore the induced gradient of the cell HTP value, resulting in the spatial tunability of the laser.

View Article and Find Full Text PDF

This work elucidates photoinduced two-dimensional (2D) gratings in dye-doped cholesteric liquid crystal films. The helical pitch is increased by green-beam-induced trans-cis isomerization and a concomitant thermal effect. Two-dimensional gratings appear when the green beam is turned off.

View Article and Find Full Text PDF

This work investigates the optical Kerr property of azo-dye doped nematic liquid crystal films using the biphotonic Z-scan technique. The results indicate that the nonlinear effect measured using the Z-scan technique with a red light can be modulated or switched with the simultaneous application of a green light, because of photoisomerization and thermal effects, as determined by dynamic measurements. The former dominates in the early stage when the green light is applied, while the latter dominates in the later stage.

View Article and Find Full Text PDF