A self-consistent state specific (SS) method in the framework of TDDFT is presented to account for solvent effects on absorption and emission processes for molecules in solution. In these processes, the initial state is an equilibrium state, while the polarization of the solvent is in nonequilibrium with the electron density of the solute in the final state. Nonequilibrium solvation free energy is calculated based on a novel nonequilibrium solvation model with constrained equilibrium manipulation.
View Article and Find Full Text PDFNonequilibrium solvation effects need to be treated properly in the study of electronic absorption processes of solutes since solvent polarization is not in equilibrium with the excited-state charge density of the solute. In this work, we developed a state specific (SS) method based on the novel nonequilibrium solvation model with constrained equilibrium manipulation to account for solvation effects in electronic absorption processes. Time-dependent density functional theory (TD-DFT) is adopted to calculate electronic excitation energies and a polarizable continuum model is employed in the treatment of bulk solvent effects on both the ground and excited electronic states.
View Article and Find Full Text PDF