Understanding cellular functions, particularly in their intricate complexity, can greatly benefit from the spatial mapping of diverse molecules through multitarget single-molecule localization microscopy (SMLM). Existing methodologies, primarily restricting the encoding dimensions to color and lifetime or requiring cyclic staining, often involve broad chromatic detection, specialized optical configurations, or sophisticated labeling techniques. Here, we propose a simple approach called buffer-exchange stochastic optical reconstruction microscopy (beSTORM), which introduces an additional dimension to differentiate between single molecules irrespective of their spectral properties.
View Article and Find Full Text PDFDistal appendages (DAPs) are vital in cilia formation, mediating vesicular and ciliary docking to the plasma membrane during early ciliogenesis. Although numerous DAP proteins arranging a nine-fold symmetry have been studied using superresolution microscopy analyses, the extensive ultrastructural understanding of the DAP structure developing from the centriole wall remains elusive owing to insufficient resolution. Here, we proposed a pragmatic imaging strategy for two-color single-molecule localization microscopy of expanded mammalian DAP.
View Article and Find Full Text PDF