Objective: Somatosensory-evoked potentials (SEPs) were found to correlate well with the disability and postoperative recovery in patients with cervical spondylotic myelopathy. Yet the exact pathophysiology behind it remains to be elucidated. This study aims to characterise the ultrastructural changes of a chronically compressive spinal cord with various SEP responses in a rat model.
View Article and Find Full Text PDFThe present study utilized diffusion MR imaging and fractional anisotropy (FA) mapping to delineate the microstructure of spinal cord. The concept of Shannon entropy was introduced to analyze the complex microstructure of healthy and injured spinal cords based on FA map. A total of 30 volunteers were recruited in this study with informed consent, including 13 healthy adult subjects (group A, 25±3 years), 12 healthy elderly subjects (group B, 53±7 years) and 5 cervical spondylotic myelopathy (CSM) patients (group C, 53±15 years).
View Article and Find Full Text PDF