Publications by authors named "Ting-He Zhang"

N6-methyladenosine (m6A) is the most abundant mRNA modification within mammalian cells, holding pivotal significance in the regulation of mRNA stability, translation and splicing. Furthermore, it plays a critical role in the regulation of RNA degradation by primarily recruiting the YTHDF2 reader protein. However, the selective regulation of mRNA decay of the m6A-methylated mRNA through YTHDF2 binding is poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • * The researchers created a model called mA-BERT-Deg to predict YTHDF2-mediated degradation of mA-methylated mRNAs, using a large dataset from HeLa cells and a unique training method to enhance prediction accuracy.
  • * Their findings revealed that nearby co-factors might hinder YTHDF2's ability to degrade mA-methylated m RNA, thus increasing mRNA stability, and the results were also validated in the HEK293 cell line, highlighting
View Article and Find Full Text PDF

Deep learning has been applied in precision oncology to address a variety of gene expression-based phenotype predictions. However, gene expression data's unique characteristics challenge the computer vision-inspired design of popular Deep Learning (DL) models such as Convolutional Neural Network (CNN) and ask for the need to develop interpretable DL models tailored for transcriptomics study. To address the current challenges in developing an interpretable DL model for modeling gene expression data, we propose a novel interpretable deep learning architecture called T-GEM, or Transformer for Gene Expression Modeling.

View Article and Find Full Text PDF

Enhancers are non-coding DNA sequences bound by proteins called transcription factors. They function as distant regulators of gene transcription and participate in the development and maintenance of cell types and tissues. Since experimental validation of enhancers is expensive and time-consuming, many computational methods have been developed to predict enhancers and their strength.

View Article and Find Full Text PDF

Fast and effective prediction of signal peptides (SP) and their cleavage sites is of great importance in computational biology. The approaches developed to predict signal peptide can be roughly divided into machine learning based, and sliding windows based. In order to further increase the prediction accuracy and coverage of organism for SP cleavage sites, we propose a novel method for predicting SP cleavage sites called Signal-CTF that utilizes machine learning and sliding windows, and is designed for N-termial secretory proteins in a large variety of organisms including human, animal, plant, virus, bacteria, fungi and archaea.

View Article and Find Full Text PDF

Protein-protein interactions (PPIs) play a key role in many cellular processes. Unfortunately, the experimental methods currently used to identify PPIs are both time-consuming and expensive. These obstacles could be overcome by developing computational approaches to predict PPIs.

View Article and Find Full Text PDF

Revealing the subcellular location of newly discovered protein sequences can bring insight to their function and guide research at the cellular level. The rapidly increasing number of sequences entering the genome databanks has called for the development of automated analysis methods. Currently, most existing methods used to predict protein subcellular locations cover only one, or a very limited number of species.

View Article and Find Full Text PDF