Publications by authors named "Ting-Fung Jeffrey Poon"

The concept of non-Hermiticity has expanded the understanding of band topology, leading to the emergence of counter-intuitive phenomena. An example is the non-Hermitian skin effect (NHSE), which involves the concentration of eigenstates at the boundary. However, despite the potential insights that can be gained from high-dimensional non-Hermitian quantum systems in areas such as curved space, high-order topological phases and black holes, the realization of this effect in high dimensions remains unexplored.

View Article and Find Full Text PDF

The disorder systems host three types of fundamental quantum states, known as the extended, localized, and critical states, of which the critical states remain being much less explored. Here we propose a class of exactly solvable models which host a novel type of exact mobility edges (MEs) separating localized states from robust critical states, and propose experimental realization. Here the robustness refers to the stability against both single-particle perturbation and interactions in the few-body regime.

View Article and Find Full Text PDF

Symmetry plays a fundamental role in understanding complex quantum matter, particularly in classifying topological quantum phases, which have attracted great interests in the recent decade. An outstanding example is the time-reversal invariant topological insulator, a symmetry-protected topological (SPT) phase in the symplectic class of the Altland-Zirnbauer classification. We report the observation for ultracold atoms of a noninteracting SPT band in a one-dimensional optical lattice and study quench dynamics between topologically distinct regimes.

View Article and Find Full Text PDF

It is well known that non-Abelian Majorana zero modes (MZM) are located at vortex cores in a p_{x}+𝒾p_{y} topological superconductor, which can be realized in a 2D spin-orbit coupled system with a single Fermi surface and by proximity coupling to an s-wave superconductor. Here we show that the existence of non-Abelian MZMs is unrelated to the bulk topology of a 2D superconductor, and propose that such exotic modes can result in a much broader range of superconductors, being topological or trivial. For a generic 2D system with multiple Fermi surfaces that is gapped out by superconducting pairings, we show that at least a single MZM survives if there are only an odd number of Fermi surfaces of which the corresponding superconducting orders have vortices; such a MZM is protected by an emergent Chern-Simons invariant, irrespective of the bulk topology of the superconductor.

View Article and Find Full Text PDF