Hypoxic expansion has been demonstrated to enhance neuronal differentiation of bone-marrow derived mesenchymal stem cells (BMSCs). Whether adipose-derived mesenchymal stem cells (ADSCs) increase their neuronal differentiation potential following hypoxic expansion has been examined in the study. Real-time quantitative reverse transcription-polymerase chain reaction and immunofluorescence staining were employed to detect the expression of neuronal markers and compare the differentiation efficiency of hypoxic and normoxic ADSCs.
View Article and Find Full Text PDFJ Tissue Eng Regen Med
December 2020
Repairing the peripheral nerves following a segmental defect injury remains surgically challenging. Because of some disadvantages of nerve grafts, nerve regeneration, such as conduits combined with bone marrow-derived mesenchymal stem cells (BMSCs), may serve as an alternative. BMSCs expand under hypoxic conditions, decrease in senescence, and increase in proliferation and differentiation potential into the bone, fat, and cartilage.
View Article and Find Full Text PDFThree-dimentional (3D) multicellular aggregates (spheroids), compared to the traditional 2D monolayer cultured cells, are physiologically more similar to the cells in vivo. So far there are various techniques to generate 3D spheroids. Spheroids obtained from different methods have already been applied to regenerative medicine or cancer research.
View Article and Find Full Text PDFA major challenge in tissue engineering is the lack of proper vascularization. Although various approaches have been used to build vascular network in a tissue engineering construct, there remain some drawbacks. Herein, a glucose-sensitive self-healing hydrogel are employed as sacrificial materials to fabricate branched tubular channels within a construct.
View Article and Find Full Text PDFThe uptake and distribution of negatively charged superparamagnetic iron oxide (Fe₃O₄) nanoparticles (SPIONs) in mouse embryonic fibroblasts NIH3T3, and magnetic resonance imaging (MRI) signal influenced by SPIONs injected into experimental animals, were visualized and investigated. Cellular uptake and distribution of the SPIONs in NIH3T3 after staining with Prussian Blue were investigated by a bright-field microscope equipped with digital color camera. SPIONs were localized in vesicles, mostly placed near the nucleus.
View Article and Find Full Text PDFCell- and gene-based therapies have emerged as promising strategies for treating neurological diseases. The sources of neural stem cells are limited while the induced pluripotent stem (iPS) cells have risk of tumor formation. Here, we proposed the generation of self-renewable, multipotent, and neural lineage-related neural crest stem-like cells by chitosan substrate-mediated gene transfer of a single factor forkhead box D3 (FOXD3) for the use in neural repair.
View Article and Find Full Text PDFThe cellular uptake of nanoparticles (NPs) can be promoted by NP surface modification but cell viability is often sacrificed. Our previous study has shown that intracellular uptake of iron oxide NPs was significantly increased for cells cultured on chitosan. However, the mechanism for having the higher cellular uptake as well as better cell survival on the chitosan surface remains unclear.
View Article and Find Full Text PDFA novel approach of making a biomimetic nerve conduit was established by seeding adipose-derived adult stem cells (ADSCs) on the external wall of porous poly(d,l-lactic acid) (PLA) nerve conduits. The PLA conduits were fabricated using gas foaming salt and solvent-nonsolvent phase conversion. We examined the effect of two different porous structures (GS and GL) on ADSC growth and proliferation.
View Article and Find Full Text PDFAdipose-derived adult stem cells (ASCs) have gained much attention because of their multipotency and easy access. Here we describe a novel chitosan-based selection (CS) system instead of the conventional plastic adherence (PA) to obtain the primary ASCs. The minimal amount of adipose tissue for consistent isolation of ASCs is reduced from 10 mL to 5 mL.
View Article and Find Full Text PDFAn injectable, self-healing hydrogel (≈1.5 kPa) is developed for healing nerve-system deficits. Neurosphere-like progenitors proliferate in the hydrogel and differentiate into neuron-like cells.
View Article and Find Full Text PDFSubstrate-derived mesenchymal stem cell (MSC) spheroids show greater differentiation capacities than dispersed single cells in vitro. During spheroid formation, nanoparticles (NPs)/genes may be delivered into the cells. In this study, MSCs were conveniently labeled with superparamagnetic Fe3O4 NPs, or transfected with brain-derived neurotrophic factor (BDNF) gene, by the substrate-mediated NP/gene uptake.
View Article and Find Full Text PDFNerve conduits are often used in combination with bioactive molecules and stem cells to enhance peripheral nerve regeneration. In this study, the acidic fibroblast growth factor 1 (FGF1) was immobilized onto the microporous/micropatterned poly (D, L-lactic acid) (PLA) nerve conduits after open air plasma treatment. PLA substrates grafted with chitosan in the presence of a small amount of gold nanoparticles (nano Au) showed a protective effect on the activity of the immobilized FGF1 in vitro.
View Article and Find Full Text PDFNanoparticles (NPs) are usually surface modified to increase endocytosis for applications in cellular imaging and gene delivery. The influence of cell culture substrates on endocytosis remains relatively unexplored. This study investigated the substrate-mediated effects on the uptake of NPs by mesenchymal stem cells (MSCs).
View Article and Find Full Text PDF