Sphingolipids (SPs) are structurally diverse and represent one of the most quantitatively abundant classes of lipids in mammalian cells. In addition to their structural roles, many SP species are known to be bioactive mediators of essential cellular processes. Historically, studies have focused on SP species that contain the canonical 18‑carbon, mono-unsaturated sphingoid backbone.
View Article and Find Full Text PDFOtotoxicity is a major adverse effect of platinum-based chemotherapeutics and currently, there remains a lack of United States Food and Drug Administration-approved therapies to prevent or treat this problem. In our study, we examined the role of the sphingosine 1-phosphate receptor 2 (S1P) in attenuating cisplatin-induced ototoxicity in several different animal models and cell lines. We found that ototoxicity in S1P knockout mice is dependent on reactive oxygen species (ROS) production and that S1P receptor activation with a specific agonist, CYM-5478, significantly attenuates cisplatin-induced defects, including hair cell degeneration in zebrafish and prolonged auditory brainstem response latency in rats.
View Article and Find Full Text PDFMicroglial cells are resident macrophages of the central nervous system (CNS) that respond to bioactive lipids such as docosahexaenoic acid (DHA). Low micromolar concentrations of DHA typically promote anti-inflammatory functions of microglia, but higher concentrations result in a form of pro-inflammatory programmed cell death known as pyroptosis. This study used scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to investigate the morphological characteristics of pyroptosis in BV-2 microglial cells following exposure to 200 µM DHA.
View Article and Find Full Text PDF