By collecting the atmospheric precipitation, surface water, and groundwater in the Inner Mongolia section of the Yellow River Basin in July 2021 (wet season), October (normal season), and April 2022 (dry season), stable isotope technology was used to analyze the temporal and spatial changes in hydrogen and oxygen stable isotopes in the "three rivers" of the basin, and the MixSIAR mixing model was used to reveal the water body transformation relationship. The results showed that the mean difference in the groundwater isotope was small in the abundance period, flat period, and dry period in the Mongolia section of the Yellow River Basin. The groundwater regeneration was slow, the retention time was long, the seasonal variation was not obvious, and the D value of surface water was higher in the abundance period than in the normal period and dry period.
View Article and Find Full Text PDFTaking the Tugeligaole sub-basin of the Jilantai Salt Lake Basin in Inner Mongolia as the typical study area, the groundwater samples of 22 points were collected, and their main characteristic indexes were tested during the wet season and the dry season separately in 2021. Mathematical statistics, Piper triangular diagrams, a Gibbs plot, ionic relations, and factor analysis were used to analyze and discuss the hydrochemical characteristics and formation mechanism of groundwater in different periods. Based on the evaluation of the groundwater quality using the water quality index(WQI) method, the potential risks of groundwater Cr and F were evaluated using the health risk evaluation model.
View Article and Find Full Text PDFTo deeply understand the hydrological cycle process and the transformation mechanism of different water bodies in the grassland inland river basin, the atmospheric precipitation, river water, and groundwater in the Xilin River Basin were taken as the research objects, the hydrogen and oxygen stable isotopes were analyzed, and the multi-scale spatio-temporal characteristics were analyzed to explore the quantitative transformation relationship between different water bodies in the basin. The results showed that:① the Xilin River Basin had an obvious inland semi-arid climate, the atmospheric precipitation was the main source of recharge for the river water and groundwater, and the groundwater and river water experienced different degrees of non-equilibrium evaporation at the same time. ② The isotopic composition of the river water showed the characteristics of depletion in spring and autumn and enrichment in summer and showed a trend of increasing from upstream to downstream in space.
View Article and Find Full Text PDFTo assess the health risk status and pollution sources of heavy metals in the atmosphere of ecologically vulnerable areas, the surrounding area of Dahekou Reservoir in Xilingol League was selected as the study area. From 2021 to 2022, 12 monitoring points for atmospheric dust fall were collected for a period of one year. A total of 144 samples were collected to determine the contents of eight types of heavy metals, namely Cr, Ni, Pb, Cu, Zn, Mn, As, and Cd.
View Article and Find Full Text PDFThe Yellow River in Inner Mongolia was selected as the study area in this study. In July (wet season) and October (dry season) of 2021, the acquisition of seasonal rivers, the Yellow River tributaries and precipitation, the Yellow River, Wuliangsuhai, Lake Hasuhai, Lake Daihai, an irrigation canal system, and underground water and sea water samples were collected to test the water chemical composition and hydrogen and oxygen isotopic values of different water types. Using the Piper triplot, Gibbs plot, ion ratio, and MixSIAR model methods, the evolution of water chemistry in the Mongolian section of the Yellow River Basin was analyzed, and the transformation relationship between precipitation, surface water, and groundwater was revealed.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
August 2023
Predicting the groundwater level of karst aquifers in North China Coalfield is essential for early warning of mine water hazards and regional water resources management. However, the dynamic changes of strata structure and hydrogeological parameters driven by coal mining activity cause challenges to the process-oriented groundwater model. In order to achieve accurate prediction of groundwater level in large mining areas, this study was the first to use the data-driven Nonlinear Autoregressive with External Input (NARX) model to predict the groundwater level of six karst aquifer observation wells in Pingshuo Mining Area.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
June 2022
Exploring the temporal and spatial variations of precipitation and drought is an important topic in hydro-logy. Based on the precipitation data of 619 meteorological stations in China from 1951 to 2018, we used anomaly percentage method and Morlet wavelet analysis to analyze the temporal and spatial variations of annual precipitation and drought. The results showed that annual precipitation in China showed a stepwise decreasing trend from southeast to northwest during the study period, and that the intensity of annual precipitation change was on the contrary.
View Article and Find Full Text PDFThe amino acid response (AAR) and unfolded protein response (UPR) pathways converge on eIF2α phosphorylation, which is catalyzed by Gcn2 and Perk, respectively, under different stresses. This close interconnection makes it difficult to specify different functions of AAR and UPR. Here, we generated a zebrafish model in which loss of threonyl-tRNA synthetase (Tars) induces angiogenesis dependent on Tars aminoacylation activity.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
August 2020
Inner Mongolian steppe is one of the ecological barriers in China. The variation of water resources is very important for the development of social-economy and the protection of eco-environment. We collected 254 water samples of precipitation, river, and shadow groundwater during wet-season and dry-season of 2018-2019 from Balaguer River watershed and meansured the physical-chemical indicators, δD and δO of water samples.
View Article and Find Full Text PDFUsing the static chamber-GC technique, greenhouse gas (CO, CH, NO) fluxes of sand dunes and meadow wetlands were measured in a typical sand dune-meadow cascade ecological zone of Horqin. The dynamics of the greenhouse gas fluxes and driving factors were analyzed. The results showed that soil CH flux underwent absorption during the growing season, with average CH fluxes of semi-mobile dunes and meadow wetlands were -52.
View Article and Find Full Text PDFTerrestrial evapotranspiration (ET) plays a crucial role in climate regulation and the maintenance of regional water balance. Quantitative estimation of ET and its partitioning are important for revealing the eco-hydrological processes in arid and semi-arid areas. Using the in situ data sampled by the meteorological monitoring system, the Shuttleworth-Wallace (S-W) model was applied to simulate and partition ET in the mobile and semi-mobile dunes of the Horqin sandy land during the growing season in 2017.
View Article and Find Full Text PDFUsing the eddy covariance technique, the Bowen-ratio meteorological and soil monitoring system, we analyzed the CO flux dynamics and its responses to temperature and moisture over a meadow wetland in the Horqin during the growing season (from May to September) in 2016. The results showed that the accumulated net ecosystem CO exchange (NEE) was -766.18 g CO·m during the growing season.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
February 2018
The histone demethylase Jmjd3 plays a critical role in cell lineage specification and differentiation at various stages of development. However, its function during normal myeloid development remains poorly understood. Here, we carried out a systematic in vivo screen of epigenetic factors for their function in hematopoiesis and identified Jmjd3 as a new epigenetic factor that regulates myelopoiesis in zebrafish.
View Article and Find Full Text PDFInterstitial leukocyte migration plays a critical role in inflammation and offers a therapeutic target for treating inflammation-associated diseases such as multiple sclerosis. Identifying small molecules to inhibit undesired leukocyte migration provides promise for the treatment of these disorders. In this study, we identified vibsanin B, a novel macrocyclic diterpenoid isolated from Viburnum odoratissimum Ker-Gawl, that inhibited zebrafish interstitial leukocyte migration using a transgenic zebrafish line (TG:zlyz-enhanced GFP).
View Article and Find Full Text PDFNeutrophils play critical roles in vertebrate innate immune responses. As an emerging regulator in normal myelopoiesis, the precise roles of microRNA in the development of neutrophils have yet to be clarified. Using zinc-finger nucleases, we have successfully generated heritable mutations in miR-142a and miR-142b and showed that hematopoietic-specific miR-142-3p is completely deleted in miR-142 double mutant zebrafish.
View Article and Find Full Text PDFAs the primary driving forces of gastrulation, convergence and extension (C&E) movements lead to a medio-lateral narrowing and an anterior-posterior elongation of the embryonic body axis. Histone methylation as a post-translational modification plays a critical role in early embryonic development, but its functions in C&E movements remain largely unknown. Here, we show that the setdb2-dvr1 transcriptional cascade plays a critical role in C&E movements during zebrafish gastrulation.
View Article and Find Full Text PDFWe previously reported a fusion protein NUP98-IQCG in an acute leukaemia, which functions as an aberrant regulator of transcriptional expression, yet the structure and function of IQCG have not been characterized. Here we use zebrafish to investigate the role of iqcg in haematopoietic development, and find that the numbers of haematopoietic stem cells and multilineage-differentiated cells are reduced in iqcg-deficient embryos. Mechanistically, IQCG binds to calmodulin (CaM) and acts as a molecule upstream of CaM-dependent kinase IV (CaMKIV).
View Article and Find Full Text PDFBackground: Loss of the tumor suppressor phosphatase and tensin homolog (PTEN) is frequently observed in hematopoietic malignancies. Although PTEN has been implicated in maintaining the quiescence of hematopoietic stem cells (HSCs), its role in hematopoiesis during ontogeny remains largely unexplored.
Methods: The expression of hematopoietic marker genes was analyzed via whole mount in situ hybridization assay in ptena and ptenb double mutant zebrafish.
Our previous study showed that although Nr4a2b transcripts have little co-localization with tyrosine hydroxylase (TH) in the posterior tuberculum area, knockdown of Nr4a2 caused a decrease in the number of TH-positive (TH(+)) neurons in the posterior tuberculum area. It suggests that Nr4a2 expression in the progenitors may play an important role in regulating differentiation rather than survival of TH(+) progenitors in the posterior tuberculum area during early zebrafish embryogenesis. In this study, we determined the correlation between TH and Nr4a2 in adult zebrafish brain and found that Nr4a2b was co-localized with the spindle-shaped TH(+) cells in the posterior tuberculum area and some small round TH(+) cells in the pretectum area, but not with large pear-shaped TH(+) cells in adult zebrafish diencephalon.
View Article and Find Full Text PDFBackground: The aberrant activation of Ras signaling is associated with human diseases including hematological malignancies and vascular disorders. So far the pathological roles of activated Ras signaling in hematopoiesis and vasculogenesis are largely unknown.
Methods: A conditional Cre/loxP transgenic strategy was used to mediate the specific expression of a constitutively active form of human N-Ras in zebrafish endothelial and hematopoietic cells driven by the zebrafish lmo2 promoter.
Background: The role of cannabinoid receptor type 2 (Cnr2) in regulating immune function had been widely investigated, but the mechanism is not fully understood.
Results: Cnr2 activation down-regulates 5-lipoxygenase (Alox5) expression by suppressing the JNK/c-Jun activation.
Conclusion: The Cnr2-JNK-Alox5 axis modulates leukocyte inflammatory migration.