Antimicrobial use in food-producing animals has come under increasing scrutiny due to its potential association with antimicrobial resistance (AMR). Monitoring of AMR in indicator microorganisms such as spp. in meat production facilities and retail meat products can provide important information on the dynamics and prevalence of AMR in these environments.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFFor a One-Health investigation of antimicrobial resistance (AMR) in Enterococcus spp., isolates from humans and beef cattle along with abattoirs, manured fields, natural streams, and wastewater from both urban and cattle feedlot sources were collected over two years. Species identification of Enterococcus revealed distinct associations across the continuum.
View Article and Find Full Text PDFHere, we report the draft genome sequences of 36 and 7 isolates recovered from a beef processing facility and retail ground beef. The beef processing facility samples were collected from beef carcasses, conveyor belts, and ground product.
View Article and Find Full Text PDFAnimal manures are a valued source of nutrients for crop production. They frequently do, however, contain zoonotic pathogens including a wide range of viruses. Ideally, manures would be treated prior to land application, reducing the burden of zoonotic viruses, and thus the potential for transmission to adjacent water resources or crops intended for human or animal consumption.
View Article and Find Full Text PDFHepatitis E virus (HEV), rotavirus (RV), and porcine enteric calicivirus (PEC) infections are common in swine and raises concerns about the potential for zoonotic transmission through undercooked meat products. Enteric viruses can potentially contaminate carcasses during meat processing operations. There is a lack of information on the prevalence and control of enteric viruses in the pork processing chain.
View Article and Find Full Text PDFUnlabelled: From the years 2008 to 2014, a total of 1,155 water samples were collected (spring to fall) from 24 surface water sampling sites located in a mixed-used but predominantly agricultural (i.e., dairy livestock production) river basin in eastern Ontario, Canada.
View Article and Find Full Text PDFThere are concerns about the zoonotic transmission of viruses through undercooked pork products. There is a lack of information on suitable indicator viruses for fecal contamination with pathogenic enteric viruses in the meat processing chain. The study compared the incidence and levels of contamination of hog carcasses with F-coliphages, porcine teschovirus (PTV), and porcine adenovirus (PAdV) at different stages of the dressing process to assess their potential as indicator viruses of fecal contamination.
View Article and Find Full Text PDFThis study investigated the frequency of Salmonella serovars on pig carcasses at various processing steps in two commercial pork processing plants in Alberta, Canada and characterized phenotypic and genotypic antimicrobial resistance (AMR) and PFGE patterns of the Salmonella isolates. Over a one year period, 1000 swab samples were collected from randomly selected pigs at two slaughter plants. Sampling points were: carcass swabs after bleeding (CSAB), carcass swabs after de-hairing (CSAD, plant A) or skinning (CSASk, plant B), carcass swabs after evisceration (CSAE), carcass swabs after pasteurization (CSAP, plant A) or washing (CSAW, plants B) and retail pork (RP).
View Article and Find Full Text PDFOver the past 15 years, hepatitis E virus (HEV), norovirus (NoV), and rotavirus (RV) have been hypothesized to be potentially zoonotic; swine and pork have been suggested as possible human infection sources for all 3 viruses. Our objective was to estimate HEV, NoV, and RV prevalence and load on Canadian retail pork chops and livers. Using the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) sampling platform, pork livers (n=283) and chops (n=599) were collected, processed, and assayed for the 3 viruses by four collaborating federal laboratories using validated real time reverse transcriptase polymerase chain reactions (qRT-PCR).
View Article and Find Full Text PDFSurface waters from paired agricultural watersheds under controlled tile drainage (CTD) and uncontrolled tile drainage (UCTD) were monitored over 7 years in order to determine if there was an effect of CTD (imposed during the growing season) on occurrences and loadings of bacterial and viral pathogens, coliphages, and microbial source tracking markers. There were significantly lower occurrences of human, ruminant, and livestock (ruminant plus pig) Bacteroidales markers in the CTD watershed in relation to the UCTD watershed. As for pathogens, there were significantly lower occurrences of Salmonella spp.
View Article and Find Full Text PDFTorque teno viruses (TTV) are widespread in humans, swine as well as in several other animal species. In market ready swine, the reported prevalence ranges between 11% and 100%. Through a national retail sampling plan from the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) program, 283 and 599 liver and pork chop samples, respectively, were collected over a 12-month period from commercial establishments in 5 selected geographical regions of Canada to assess the presence of Torque teno sus viruses (TTSuVs) in these products.
View Article and Find Full Text PDFOver 1,400 water samples were collected biweekly over 6 years from an intermittent stream protected and unprotected from pasturing cattle. The samples were monitored for host-specific Bacteroidales markers, Cryptosporidium species/genotypes, viruses and coliphages associated with humans or animals, and bacterial zoonotic pathogens. Ruminant Bacteroidales markers did not increase within the restricted cattle access reach of the stream, whereas the ruminant Bacteroidales marker increased significantly in the unrestricted cattle access reach.
View Article and Find Full Text PDFA number of studies have reported that pathogenic and nonpathogenic foodborne bacteria have the ability to form filaments in microbiological growth media and foods after prolonged exposure to sublethal stress or marginal growth conditions. In many cases, nucleoids are evenly spaced throughout the filamentous cells but septa are not visible, indicating that there is a blockage in the early steps of cell division but the mechanism behind filament formation is not clear. The formation of filamentous cells appears to be a reversible stress response.
View Article and Find Full Text PDFBackground: Noroviruses (NoVs) are the leading cause of infectious gastroenteritis worldwide. Real-time reverse transcription PCR (real-time RT-PCR) is the preferred method of NoV detection for the majority of testing laboratories. Although the accepted target region for molecular detection assays is the conserved ORF1/ORF2 junction, multiple variations have been published with differences in primers, probes, reagents, multiplexing, etc.
View Article and Find Full Text PDFAppl Environ Microbiol
October 2009
Male-specific RNA coliphages (F-RNA coliphages) have been proposed as a potential viral indicator of fecal contamination in water and foods because they are easy to culture and are a normal component of the mammalian gut flora. F-RNA coliphage plaque numbers are typically obtained by directly plating a 10-fold dilution of 1 g of fecal material, but the numbers of F-RNA coliphages shed by animals and humans may be too low for direct enumeration. Therefore, the sensitivity of detecting F-RNA coliphages in fecal material was improved by extracting and precipitating F-RNA coliphage from a 10-g fecal sample by use of polyethylene glycol (PEG).
View Article and Find Full Text PDFMany food and waterborne outbreaks of infectious disease are caused by viruses. While numerous methods exist and are being developed to test food and water for the presence of enteric viruses, there is no standard control for the comparison of different methods. Potential control viruses should be well characterized, share the physical characteristics of the enterically infecting viruses and not normally be associated with foods.
View Article and Find Full Text PDF