Aims: Cardiac energy metabolism is centrally involved in heart failure (HF), although the direction of the metabolic alterations is complex and likely dependent on the particular stage of HF progression. Vascular endothelial growth factor B (VEGF-B) has been shown to modulate metabolic processes and to induce physiological cardiac hypertrophy; thus, it could be cardioprotective in the failing myocardium. This study investigates the role of VEGF-B in cardiac proteomic and metabolic adaptation in HF during aldosterone and high-salt hypertensive challenges.
View Article and Find Full Text PDFBackground: Recent studies have indicated that sodium storage is influenced by macrophages that secrete VEGF-C (vascular endothelial growth factor) during salt stress thus stimulating lymphangiogenesis, thereby acting as a buffer against increased blood pressure (BP). We aimed to explore the role of dermal lymphatics in BP and sodium homeostasis. Our hypothesis was that mice with reduced dermal lymphatic vessels were more prone to develop salt-sensitive hypertension, and that mice with hyperplastic vessels were protected.
View Article and Find Full Text PDFRecently, studies have emerged suggesting that the skin plays a role as major Na reservoir via regulation of the content of glycosaminoglycans and osmotic gradients. We investigated whether there were electrolyte gradients in skin and where Na could be stored to be inactivated from a fluid balance viewpoint. Na accumulation was induced in rats by a high salt diet (HSD) (8% NaCl and 1% saline to drink) or by implantation of a deoxycorticosterone acetate (DOCA) tablet (1% saline to drink) using rats on a low salt diet (LSD) (0.
View Article and Find Full Text PDFThe goal of this study is to investigate the pharmacokinetics in plasma and tumour interstitial fluid of two T-cell bispecifics (TCBs) with different binding affinities to the tumour target and to assess the subsequent cytokine release in a tumour-bearing humanised mouse model. Pharmacokinetics (PK) as well as cytokine data were collected in humanised mice after iv injection of cibisatamab and CEACAM5-TCB which are binding with different binding affinities to the tumour antigen carcinoembryonic antigen (CEA). The PK data were modelled and coupled to a previously published physiologically based PK model.
View Article and Find Full Text PDFPatients with melanoma have a high risk of developing brain metastasis, which is associated with a dismal prognosis. During early stages of metastasis development, the blood-brain barrier (BBB) is likely intact, which inhibits sufficient drug delivery into the metastatic lesions. We investigated the ability of the peptide, K16ApoE, to permeabilize the BBB for improved treatment with targeted therapies preclinically.
View Article and Find Full Text PDFBackground: Cancer progression is influenced by a pro-tumorigenic microenvironment. The aberrant tumor stroma with increased collagen deposition, contractile fibroblasts and dysfunctional vessels has a major impact on the interstitial fluid pressure (PIF) in most solid tumors. An increased tumor PIF is a barrier to the transport of interstitial fluid into and within the tumor.
View Article and Find Full Text PDFThe genetic background of a mouse strain determines its susceptibility to disease. C57BL/6J and Balb/CJ are two widely used inbred mouse strains that we found react dramatically differently to angiotensin II and high-salt diet (ANG II + Salt). Balb/CJ show increased mortality associated with anuria and edema formation while C57BL/6J develop arterial hypertension but do not decompensate and die.
View Article and Find Full Text PDFBalb/CJ mice are more sensitive to treatment with angiotensin II (ANG II) and high-salt diet compared with C57BL/6J mice. Together with higher mortality, they develop edema, signs of heart failure, and acute kidney injury. The aim of the present study was to identify differences in renal gene regulation that may affect kidney function and fluid balance, which could contribute to decompensation in Balb/CJ mice after ANG II + salt treatment.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2018
Objective- A commonly accepted pivotal mechanism in fluid volume and blood pressure regulation is the parallel relationship between body Na and extracellular fluid content. Several recent studies have, however, shown that a considerable amount of Na can be retained in skin without commensurate water retention. Here, we asked whether a salt accumulation shown to result in VEGF (vascular endothelial growth factor)-C secretion and lymphangiogenesis had any influence on lymphatic function.
View Article and Find Full Text PDFNew Findings: What is the central question of this study? Collagen-binding β -integrins function physiologically in cellular control of dermal interstitial fluid pressure (P ) in vivo and thereby participate in control of extravascular fluid volume. During anaphylaxis, simulated by injection of compound 48/80, integrin α β takes over this physiological function. Here we addressed the question whether integrin α β can replace collagen-binding β -integrin to maintain a long-term homeostatic P .
View Article and Find Full Text PDFKey Points: For therapeutic antibodies, total tissue concentrations are frequently reported as a lump sum measure of the antibody in residual plasma, interstitial fluid and cells. In terms of correlating antibody exposure to a therapeutic effect, however, interstitial pharmacokinetics might be more relevant. In the present study, we collected total tissue and interstitial antibody biodistribution data in mice and assessed the composition of tissue samples aiming to correct total tissue measurements for plasma and cellular content.
View Article and Find Full Text PDFObjective: Lymphatic vessels play an important role in body fluid, as well as immune system homeostasis. Although the role of malfunctioning or missing lymphatics has been studied extensively, less is known on the functional consequences of a chronically expanded lymphatic network or lymphangiogenesis.
Approach And Results: To this end, we used K14-VEGF-C (keratin-14 vascular endothelial growth factor-C) transgenic mice overexpressing the vascular endothelial growth factor C in skin and investigated the responses to inflammatory and fluid volume challenges.
We present the development of the notochord of the Atlantic salmon (Salmo salar L.), from early embryo to sexually mature fish. Over the salmon's lifespan, profound morphological changes occur.
View Article and Find Full Text PDFThe common notion is that the body Na is maintained within narrow limits for fluid and blood pressure homeostasis. Several studies have, however, shown that considerable amounts of Na can be retained or removed from the body without commensurate water loss and that the skin can serve as a major salt reservoir. Our own data from rats have suggested that the skin is hypertonic compared with plasma on salt storage and that this also applies to skin interstitial fluid.
View Article and Find Full Text PDFIncreased lymphangiogenesis is a common feature of cancer development and progression, yet the influence of impaired lymphangiogenesis on tumor growth is elusive. C3HBA breast cancer and KHT-1 sarcoma cell lines were implanted orthotopically in Chy mice, harboring a heterozygous inactivating mutation of vascular endothelial growth factor receptor-3, resulting in impaired dermal lymphangiogenesis. Accelerated tumor growth was observed in both cancer models in Chy mice, coinciding with reduced peritumoral lymphangiogenesis.
View Article and Find Full Text PDFThe lymphatic vessels are playing an important role in inflammation since they return extravasated fluid, proteins, and cells back into the circulation and regulate immune cell trafficking. The oral mucosa, including gingiva, is well supplied with lymphatic vessels and is frequently challenged with inflammatory insults. Lymphatic vessels in gingiva protect against periodontal disease development, but quantification of lymph flow in this area has so far never been performed, due to lack of reliable methods.
View Article and Find Full Text PDFThe central nervous system (CNS) is considered an organ devoid of lymphatic vasculature. Yet, part of the cerebrospinal fluid (CSF) drains into the cervical lymph nodes (LNs). The mechanism of CSF entry into the LNs has been unclear.
View Article and Find Full Text PDFCollagen and glycosaminoglycans (GAGs) constituting the ECM may limit the space available and thus exclude macromolecules from a fraction of the interstitial fluid (IF) phase. This exclusion phenomenon is of importance for transcapillary fluid and solute exchange. The purpose of the study was to examine the range of interstitial exclusion in rat skin by using probes within a span of molecular weights and electrical charge and also to test if a change in interstitial composition, occurring as a consequence of aging, affected exclusion.
View Article and Find Full Text PDFWe have previously shown that fibroblast expression of α11β1 integrin stimulates A549 carcinoma cell growth in a xenograft tumor model. To understand the molecular mechanisms whereby a collagen receptor on fibroblast can regulate tumor growth we have used a 3D heterospheroid system composed of A549 tumor cells and fibroblasts without (α11+/+) or with a deletion (α11-/-) in integrin α11 gene. Our data show that α11-/-/A549 spheroids are larger than α11+/+/A549 spheroids, and that A549 cell number, cell migration and cell invasion in a collagen I gel are decreased in α11-/-/A549 spheroids.
View Article and Find Full Text PDFThe skin interstitium sequesters excess Na+ and Cl- in salt-sensitive hypertension. Mononuclear phagocyte system (MPS) cells are recruited to the skin, sense the hypertonic electrolyte accumulation in skin, and activate the tonicity-responsive enhancer-binding protein (TONEBP, also known as NFAT5) to initiate expression and secretion of VEGFC, which enhances electrolyte clearance via cutaneous lymph vessels and increases eNOS expression in blood vessels. It is unclear whether this local MPS response to osmotic stress is important to systemic blood pressure control.
View Article and Find Full Text PDFIn peritoneal dialysis (PD) patients, the frequent exposure to "unphysiological" dialysis fluids elicits a chronic state of a low-grade peritoneal inflammation leading to interstitial matrix remodeling and angiogenesis. Proinflammatory cytokines are important regulators involved in this inflammatory process that ultimately leads to dysfunction of the peritoneum as a dialysis membrane. We aimed to measure the local concentrations of proinflammatory cytokines in the peritoneal interstitial fluid (IF).
View Article and Find Full Text PDFThe spleen is a part of the immune system and is involved in the response to a systemic inflammation induced by blood borne pathogens that may induce sepsis. Knowledge about the protein composition of the spleen microenvironment in a control situation and during systemic inflammation may contribute to our understanding of the pathophysiology of sepsis. To our knowledge, the proteome of the fluid phase of the spleen microenvironment has not previously been investigated.
View Article and Find Full Text PDFBackground: Stromal fibroblasts are important determinants of tumor cell behavior. They act to condition the tumor microenvironment, influence tumor growth, support tumor angiogenesis and affect tumor metastasis. Heparan sulfate proteoglycans, present both on tumor and stromal cells, interact with a large number of ligands including growth factors, their receptors, and structural components of the extracellular matrix.
View Article and Find Full Text PDF