Publications by authors named "Tine Bryan Stensbol"

Copy number variations (CNV) involving multiple genes are ideal models to study polygenic neuropsychiatric disorders. Since 22q11.2 deletion is regarded as the most important single genetic risk factor for developing schizophrenia, characterizing the effects of this CNV on neural networks offers a unique avenue towards delineating polygenic interactions conferring risk for the disorder.

View Article and Find Full Text PDF

The 15q13.3 microdeletion copy number variation is strongly associated with schizophrenia and epilepsy. The CHRNA7 gene, encoding nicotinic acetylcholine alpha 7 receptors (nAChA7Rs), is hypothesized to be one of the main genes in this deletion causing the neuropsychiatric phenotype.

View Article and Find Full Text PDF

Brexpiprazole is a serotonin-dopamine activity modulator in clinical development for schizophrenia, adjunctive treatment of major depressive disorder, agitation in Alzheimer's disease and post-traumatic stress disorder. It is a partial agonist at 5-HT1A and D2 receptors with similar potency, and an antagonist at 5-HT2A and adrenergic α1B/2C receptors. Compared with aripiprazole, brexpiprazole is more potent at 5-HT1A receptors and displays less intrinsic activity at D2 receptors.

View Article and Find Full Text PDF

Brexpiprazole (OPC-34712, 7-{4-[4-(1-benzothiophen-4-yl)piperazin-1-yl]butoxy}quinolin-2(1H)-one) is a novel drug candidate in clinical development for psychiatric disorders with high affinity for serotonin, dopamine, and noradrenaline receptors. In particular, it bound with high affinity (Ki < 1 nM) to human serotonin 1A (h5-HT1A)-, h5-HT2A-, long form of human D2 (hD2L)-, hα1B-, and hα2C-adrenergic receptors. It displayed partial agonism at h5-HT1A and hD2 receptors in cloned receptor systems and potent antagonism of h5-HT2A receptors and hα1B/2C-adrenoceptors.

View Article and Find Full Text PDF

Brexpiprazole (OPC-34712, 7-{4-[4-(1-benzothiophen-4-yl)piperazin-1-yl]butoxy}quinolin-2(1H)-one) is a novel serotonin-dopamine activity modulator with partial agonist activity at serotonin 1A (5-HT1A) and D2/3 receptors, combined with potent antagonist effects on 5-HT2A, α1B-, and α2C-adrenergic receptors. Brexpiprazole inhibited conditioned avoidance response (ED50 = 6.0 mg/kg), apomorphine- or d-amphetamine-induced hyperactivity (ED50 = 2.

View Article and Find Full Text PDF

Background: It has been suggested that outcomes of antidepressant treatment for major depressive disorder could be significantly improved if treatment choice is informed by genetic data. This study aims to test the hypothesis that common genetic variants can predict response to antidepressants in a clinically meaningful way.

Methods And Findings: The NEWMEDS consortium, an academia-industry partnership, assembled a database of over 2,000 European-ancestry individuals with major depressive disorder, prospectively measured treatment outcomes with serotonin reuptake inhibiting or noradrenaline reuptake inhibiting antidepressants and available genetic samples from five studies (three randomized controlled trials, one part-randomized controlled trial, and one treatment cohort study).

View Article and Find Full Text PDF

The serotonin6 (5-HT(6)) receptor has received attention for its proposed role in cognitive impairments associated with schizophrenia and Alzheimer's disease. This has lead to a search for selective 5-HT(6) receptor ligands useful for in vivo imaging in animals and humans. The novel 5-HT(6) receptor antagonist Lu AE60157 (8-(4-methylpiperazin-1-yl)-3-phenylsulfonylquinoline) displays high affinity for the human (h) 5-HT(6) receptor (K(d) 0.

View Article and Find Full Text PDF

The synthesis and structure-activity relationship of a novel series of compounds with combined effects on 5-HT(3A) and 5-HT(1A) receptors and on the serotonin (5-HT) transporter (SERT) are described. Compound 5m (Lu AA21004) was the lead compound, displaying high affinity for recombinant human 5-HT(1A) (K(i) = 15 nM), 5-HT(1B) (K(i) = 33 nM), 5-HT(3A) (K(i) = 3.7 nM), 5-HT(7) (K(i) = 19 nM), and noradrenergic β(1) (K(i) = 46 nM) receptors, and SERT (K(i) = 1.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is hypothesized to result from elevated brain levels of beta-amyloid peptide (Abeta) which is the main component of plaques found in AD brains and which cause memory impairment in mice. Therefore, there has been a major focus on the development of inhibitors of the Abeta producing enzymes gamma-secretase and beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1). In this study, we investigated the Abeta-lowering effects of the BACE1 inhibitor LY2434074 in vitro and in vivo, comparing it to the well characterized gamma-secretase inhibitor LY450139.

View Article and Find Full Text PDF

A series of Milnacipran analogs with variation in the aromatic moiety were prepared in high enantiomeric excess. Structure-activity relationships for two parallel enantiomeric series are described. The (-)-(1R,2S)-naphthyl analog (8h) showed the highest potency in the two series and is a triple reuptake inhibitor of the SERT, NET, and DAT.

View Article and Find Full Text PDF

Potassium channels containing the KCNQ2 subunit play an important role in the regulation of neuronal excitability and therefore have been implicated in epilepsy. This study describes the expression of KCNQ2 subunit immunoreactivity in the basolateral amygdala in two rat models of temporal lobe epilepsy, (1) amygdala kindling and (2) spontaneously epileptic rats after status epilepticus induced by hippocampal electrical stimulation. KCNQ2 subunit immunoreactivity was assessed with a commercial antibody raised against a C-terminal part of the KCNQ2 protein.

View Article and Find Full Text PDF

It is generally agreed that (S)-glutamic acid (Glu) receptors are involved in the development of a number of diseases in the central nervous system (CNS), and ligands that interact with these receptors are of significant interest. Selective ligands are indispensable as tools for the elucidation of the physiological role of AMPA receptors and as leads for the development of therapeutic agents. Over the last decade a wide variety of such ligands have been developed and studies on the structure-activity relationships of these compounds have contributed to our understanding of the mechanisms involved in AMPA receptor activation and blockade.

View Article and Find Full Text PDF