Publications by authors named "Tinatin I Brelidze"

In scientific research, objectivity and unbiased data analysis is crucial for the validity and reproducibility of outcomes. This is particularly important for studies involving video or image categorization. A common approach of decreasing the bias is delegating data analysis to researchers unfamiliar with the experimental settings.

View Article and Find Full Text PDF

In scientific research, objectivity and unbiased data analysis is crucial for the validity and reproducibility of outcomes. This is particularly important for studies involving video or image categorization. A common approach of decreasing the bias is delegating data analysis to researchers unfamiliar with the experimental settings.

View Article and Find Full Text PDF

Ion channels are transmembrane proteins essential for cellular functions and are important drug targets. Surface plasmon resonance (SPR) is a powerful technique for investigating protein-protein and protein-small molecule ligand interactions. SPR has been underutilized for studies of ion channels, even though it could provide a wealth of information on the mechanisms of ion channel regulation and aid in ion channel drug discovery.

View Article and Find Full Text PDF

EAG1 depolarization-activated potassium selective channels are important targets for treatment of cancer and neurological disorders. EAG1 channels are formed by a tetrameric subunit assembly with each subunit containing an N-terminal Per-Arnt-Sim (PAS) domain and C-terminal cyclic nucleotide-binding homology (CNBH) domain. The PAS and CNBH domains from adjacent subunits interact and form an intracellular tetrameric ring that regulates the EAG1 channel gating, including the movement of the voltage sensor domain (VSD) from closed to open states.

View Article and Find Full Text PDF

Ether-a-go-go (EAG) channels are key regulators of neuronal excitability and tumorigenesis. EAG channels contain an N-terminal Per-Arnt-Sim (PAS) domain that can regulate currents from EAG channels by binding small molecules. The molecular mechanism of this regulation is not clear.

View Article and Find Full Text PDF

The Coronavirus Disease 2019 (COVID-19) pandemic was caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which enters host cells through interactions of its spike protein to Angiotensin-Converting Enzyme 2 (ACE2). ACE2 is a peptidase that cleaves Angiotensin II, a critical pathological mediator. This study investigated if the spike protein binding to ACE2 compromises its peptidase activity.

View Article and Find Full Text PDF

DiI is a lipophilic fluorescent dye frequently used to label and trace cells in cell cultures and xenograft models. However, DiI can also transfer from labeled to unlabeled cells, including host organism cells, and label dead cells obscuring interpretation of the results. These limitations of DiI labeling in xenograft models have not been thoroughly investigated.

View Article and Find Full Text PDF

Cardiovascular complications are seen among human immunodeficiency virus (HIV)-positive individuals, who now survive longer due to successful antiretroviral therapies. Pulmonary arterial hypertension (PAH) is a fatal disease characterized by increased blood pressure in the lung circulation. The prevalence of PAH in the HIV-positive population is dramatically higher than that in the general population.

View Article and Find Full Text PDF

Cardiovascular complications are seen among human immunodeficiency virus (HIV)-positive individuals who can now survive longer due to successful antiretroviral therapies. Among them, pulmonary arterial hypertension (PAH) is a fatal disease characterized by increased blood pressure in the lung circulation due to vasoconstriction and vascular wall remodeling, resulting in the overworking of the heart. The prevalence of PAH in the HIVpositive population is dramatically higher than that in the general population.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 has been causing the pandemic of coronavirus disease 2019 (COVID-19) that has so far resulted in over 450 million infections and six million deaths. This respiratory virus uses angiotensin-converting enzyme 2 as a receptor to enter host cells and affects various tissues in addition to the lungs. The present study reports that the placental arteries of women who gave birth to live full-term newborns while developing COVID-19 during pregnancy exhibit severe vascular wall thickening and the occlusion of the vascular lumen.

View Article and Find Full Text PDF

Human ether-á-go-go-related gene (hERG) channels are key regulators of cardiac repolarization, neuronal excitability, and tumorigenesis. hERG channels contain N-terminal Per-Arnt-Sim (PAS) and C-terminal cyclic nucleotide-binding homology (CNBH) domains with many long-QT syndrome (LQTS)-causing mutations located at the interface between these domains. Despite the importance of PAS/CNBH domain interactions, little is known about their affinity.

View Article and Find Full Text PDF

Since its discovery in 1951, chlorpromazine (CPZ) has been one of the most widely used antipsychotic medications for treating schizophrenia and other psychiatric disorders. In addition to its antipsychotic effect, many studies in the last several decades have found that CPZ has a potent antitumorigenic effect. These studies have shown that CPZ affects a number of molecular oncogenic targets through multiple pathways, including the regulation of cell cycle, cancer growth and metastasis, chemo-resistance and stemness of cancer cells.

View Article and Find Full Text PDF

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are major regulators of synaptic plasticity and rhythmic activity in the heart and brain. Opening of HCN channels requires membrane hyperpolarization and is further facilitated by intracellular cyclic nucleotides (cNMPs). In HCN channels, membrane hyperpolarization is sensed by the membrane-spanning voltage sensor domain (VSD), and the cNMP-dependent gating is mediated by the intracellular cyclic nucleotide-binding domain (CNBD) connected to the pore-forming S6 transmembrane segment via the C-linker.

View Article and Find Full Text PDF

Ether-a-go-go (EAG) potassium selective channels are major regulators of neuronal excitability and cancer progression. EAG channels contain a Per-Arnt-Sim (PAS) domain in their intracellular N-terminal region. The PAS domain is structurally similar to the PAS domains in non-ion channel proteins, where these domains frequently function as ligand-binding domains.

View Article and Find Full Text PDF

Background: KCNH family of potassium channels is responsible for diverse physiological functions ranging from the regulation of neuronal excitability and cardiac contraction to the regulation of cancer progression. KCNH channels contain a Per-Arn-Sim (PAS) domain in their N-terminal and cyclic nucleotide-binding homology (CNBH) domain in their C-terminal regions. These intracellular domains shape the function of KCNH channels and are important targets for drug development.

View Article and Find Full Text PDF

Protein cysteine thiol status is a major determinant of oxidative stress and oxidant signaling. The -- Protein Redox State Monitoring Kit provides a unique opportunity to investigate protein thiol states. This system adds a 15-kDa Protein-SHifter to reduced cysteine residues, and this molecular mass shift can be detected by gel electrophoresis.

View Article and Find Full Text PDF

Brelidze examines recent data revealing the new role of the intrinsic ligand in hERG potassium channel gating.

View Article and Find Full Text PDF

Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels control cardiac and neuronal rhythmicity. HCN channels contain cyclic nucleotide-binding domain (CNBD) in their C-terminal region linked to the pore-forming transmembrane segment with a C-linker. The C-linker couples the conformational changes caused by the direct binding of cyclic nucleotides to the HCN pore opening.

View Article and Find Full Text PDF

The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like cAMP, the flavonoid fisetin potentiates HCN2 channel gating.

View Article and Find Full Text PDF

The human ether-à-go-go-related gene (hERG) encodes a K(+) channel crucial for repolarization of the cardiac action potential. EAG-related gene (ERG) channels contain a C-terminal cyclic nucleotide-binding homology domain coupled to the pore of the channel by a C-linker. Here, we report the structure of the C-linker/cyclic nucleotide-binding homology domain of a mosquito ERG channel at 2.

View Article and Find Full Text PDF

The voltage-gated, K(+)-selective ether á go-go 1 (EAG1) channel is expressed throughout the brain where it is thought to regulate neuronal excitability. Besides its normal physiological role in the brain, EAG1 is abnormally expressed in several cancer cell types and promotes tumor progression. Like all other channels in the KCNH family, EAG1 channels have a large intracellular carboxy-terminal region that shares structural similarity with cyclic nucleotide-binding homology domains (CNBHDs).

View Article and Find Full Text PDF

The KCNH family of ion channels, comprising ether-à-go-go (EAG), EAG-related gene (ERG), and EAG-like (ELK) K(+)-channel subfamilies, is crucial for repolarization of the cardiac action potential, regulation of neuronal excitability and proliferation of tumour cells. The carboxy-terminal region of KCNH channels contains a cyclic-nucleotide-binding homology domain (CNBHD) and C-linker that couples the CNBHD to the pore. The C-linker/CNBHD is essential for proper function and trafficking of ion channels in the KCNH family.

View Article and Find Full Text PDF

Background: Ether-à-go-go (EAG) channels are expressed throughout the central nervous system and are also crucial regulators of cell cycle and tumor progression. The large intracellular amino- and carboxy- terminal domains of EAG1 each share similarity with known ligand binding motifs in other proteins, yet EAG1 channels have no known regulatory ligands.

Methodology/principal Findings: Here we screened a library of small biologically relevant molecules against EAG1 channels with a novel two-pronged screen to identify channel regulators.

View Article and Find Full Text PDF