Publications by authors named "Tina Unger"

Microsatellite instability (MSI) is present in 15-20% of primary colorectal cancers. MSI status is assessed to detect Lynch syndrome, guide adjuvant chemotherapy, determine prognosis, and use as a companion test for checkpoint blockade inhibitors. Traditionally, MSI status is determined by immunohistochemistry or molecular methods.

View Article and Find Full Text PDF

Thermal hydrolysis (TH) increases the anaerobic biodegradability of waste activated sludge (WAS), but also refractory organic and nutrient return load to a wastewater treatment plant (WWTP). This could lead to an increase in effluent chemical oxygen demand (COD) of the WWTP. The aim of this study was to investigate the trade-off between increase in biogas production through TH and anaerobic digestion and increase in refractory COD in dewatered sludge liquors at different temperatures of TH in lab-scale.

View Article and Find Full Text PDF

The antiepileptic drug carbamazepine (CBZ) is ubiquitously present in the anthropogenic water cycle and is therefore of concern regarding the potable water supply. Despite of its persistent behavior in the aquatic environment, a redox dependent removal at bank filtration sites with anaerobic aquifer passage was reported repeatedly but not elucidated in detail yet. The reductive transformation of CBZ was studied, using abiotic systems (catalytic hydrogenation, electrochemistry) as well as biologically active systems (column systems, batch degradation tests).

View Article and Find Full Text PDF

Various acute and chronic brain diseases result in disturbed expression of the glial glutamate transporters, GLAST/EAAT-1 and GLT-1/EAAT-2, and subsequent secondary neuronal cell death. The idea that glutamate-induced brain damage can be prevented by restoring glutamate homeostasis in the injured brain, focussed previous efforts on identifying the network controlling astrocytic glutamate transport. Since most of this work was performed with rat astrocytes, we now sought to compare the transcriptional regulation of the GLAST/EAAT-1 gene in rat and man.

View Article and Find Full Text PDF

The glial glutamate transporter subtypes, GLT-1/EAAT-2 and GLAST/EAAT-1 clear the bulk of extracellular glutamate and are severely dysregulated in various acute and chronic brain diseases. Despite the previous identification of several extracellular factors modulating glial glutamate transporter expression, our knowledge of the regulatory network controlling glial glutamate transport in health and disease still remains incomplete. In studies with cultured cortical astrocytes, we previously obtained evidence that glial glutamate transporter expression is also affected by gap junctions/connexins.

View Article and Find Full Text PDF

In the CNS, extracellular glutamate is predominantly cleared by astroglial cells through the high-affinity glutamate transporter subtype, EAAT2/GLT-1. Expression of EAAT2/GLT-1 is perturbed in various acute and chronic brain diseases eventually allowing for the onset of neurotoxic extracellular glutamate concentrations and subsequent excitotoxic neuronal cell death. The idea that glutamate-induced brain damage could be prevented by restoring glutamate homeostasis in the injured brain, spurred considerable interest in identifying the mechanisms controlling EAAT2/GLT-1 expression.

View Article and Find Full Text PDF

Background: Cytosine DNA methylation has been detected in many eukaryotic organisms and has been shown to play an important role in development and disease of vertebrates including humans. Molecularly, DNA methylation appears to be involved in the suppression of initiation or of elongation of transcription. Resulting organismal functions are suggested to be the regulation of gene silencing, the suppression of transposon activity and the suppression of initiation of transcription within genes.

View Article and Find Full Text PDF

Background: Despite being one of the most studied families within the Carnivora, the phylogenetic relationships among the members of the bear family (Ursidae) have long remained unclear. Widely divergent topologies have been suggested based on various data sets and methods.

Results: We present a fully resolved phylogeny for ursids based on ten complete mitochondrial genome sequences from all eight living and two recently extinct bear species, the European cave bear (Ursus spelaeus) and the American giant short-faced bear (Arctodus simus).

View Article and Find Full Text PDF