Publications by authors named "Tina T Nguyen"

ERAP1 is an endoplasmic reticulum-resident zinc aminopeptidase that plays an important role in the immune system by trimming peptides for loading onto major histocompatibility complex proteins. Here, we report discovery of the first inhibitors selective for ERAP1 over its paralogues ERAP2 and IRAP. Compound (-(-(2-(1-indol-3-yl)ethyl)carbamimidoyl)-2,5-difluorobenzenesulfonamide) and compound (1-(1-(4-acetylpiperazine-1-carbonyl)cyclohexyl)-3-(-tolyl)urea) are competitive inhibitors of ERAP1 aminopeptidase activity.

View Article and Find Full Text PDF

Pregnancy, spontaneous term labor (TL), and postpartum (PP) involution are associated with changes in the cellular and extracellular matrix composition of the uterus. Both the uterine smooth muscle (myometrium) and the infiltrating peripheral blood leukocytes involved in the activation of labor secrete extracellular matrix-degrading enzymes (matrix metalloproteinases, MMPs) that can modulate cellular behavior and barrier function. MMP expression is induced by mechanical stretch in several tissues.

View Article and Find Full Text PDF

Closely related peptide epitopes can be recognized by the same T cells and contribute to the immune response against pathogens encoding those epitopes, but sometimes cross-reactive epitopes share little homology. The degree of structural homology required for such disparate ligands to be recognized by cross-reactive TCRs remains unclear. In this study, we examined the mechanistic basis for cross-reactive T cell responses between epitopes from unrelated and pathogenic viruses, lymphocytic choriomeningitis virus (LCMV) and vaccinia virus.

View Article and Find Full Text PDF

ERAP1 trims antigen precursors to fit into MHC class I proteins. To fulfill this function, ERAP1 has unique substrate preferences, trimming long peptides but sparing shorter ones. To identify the structural basis for ERAP1's unusual properties, we determined the X-ray crystal structure of human ERAP1 bound to bestatin.

View Article and Find Full Text PDF

A crucial step in the immune response is the binding of antigenic peptides to major histocompatibility complex (MHC) proteins. Class II MHC proteins present their bound peptides to CD4(+) T cells, thereby helping to activate both the humoral and the cellular arms of the adaptive immune response. Peptide loading onto class II MHC proteins is regulated temporally, spatially and developmentally in antigen-presenting cells.

View Article and Find Full Text PDF