Publications by authors named "Tina Saberi Safaei"

Conversion of CO to CO powered by renewable electricity not only reduces CO pollution but also is a means to store renewable energy via chemical production of fuels from CO. However, the kinetics of this reaction are slow due its large energetic barrier. We have recently reported CO reduction that is considerably enhanced via local electric field concentration at the tips of sharp gold nanostructures.

View Article and Find Full Text PDF

Electrochemical reduction of carbon dioxide (CO) to carbon monoxide (CO) is the first step in the synthesis of more complex carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the reaction suffers from slow kinetics owing to the low local concentration of CO surrounding typical CO reduction reaction catalysts. Alkali metal cations are known to overcome this limitation through non-covalent interactions with adsorbed reagent species, but the effect is restricted by the solubility of relevant salts.

View Article and Find Full Text PDF

Image-reversal soft lithography enables the straightforward fabrication of high-performance biosensors without requiringhigh-resolution photolitography.

View Article and Find Full Text PDF

A chip-based approach for electrochemical characterization and detection of microsomes and exosomes based on direct electro-oxidation of metal nanoparticles (MNPs) that specifically recognize surface markers of these vesicles is reported. It is found that exosomes and microsomes derived from prostate cancer cells can be identified by their surface proteins EpCAM and PSMA, suggesting the potential of exosomes and microsomes for use as diagnostic biomarkers.

View Article and Find Full Text PDF

Over the last decade, significant progress has been made towards the development of approaches that enable the capture of rare circulating tumor cells (CTCs) from the blood of cancer patients, a critical capability for noninvasive tumor profiling. These advances have leveraged new insights in materials chemistry and microfluidics and allowed the capture and enumeration of CTCs with unprecedented sensitivity. However, it has become increasingly clear that simply capturing and counting tumor cells launched into the bloodstream may not provide the information needed to advance our understanding of the biology of these rare cells, or to allow us to better exploit them in medicine.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) are cancer cells disseminated from a tumor into the bloodstream. Their presence in patient blood samples has been associated with metastatic disease. Here, we report a simple system that enables the isolation and detection of these rare cancer cells.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) can be collected noninvasively and provide a wealth of information about tumor phenotype. For this reason, their specific and sensitive detection is of intense interest. Herein, we report a new, chip-based strategy for the automated analysis of cancer cells.

View Article and Find Full Text PDF