Publications by authors named "Tina S Mutka"

Malaria deaths have been decreasing over the last 10-15 years, with global mortality rates having fallen by 47% since 2000. While the World Health Organization (WHO) recommends the use of artemisinin-based combination therapies (ACTs) to combat malaria, the emergence of artemisinin resistant strains underscores the need to develop new antimalarial drugs. Recent in vivo efficacy improvements of the historical antimalarial ICI 56,780 have been reported, however, with the poor solubility and rapid development of resistance, this compound requires further optimization.

View Article and Find Full Text PDF

We have determined that tetrahydroindazoles such as show potent activity against , the causative agent of leishmaniasis. While the Hsp90 activity and anticancer properties of have previously been explored, we present here our efforts to optimize their activity against via the synthesis of novel analogues designed to probe the hydrophobic pocket of the protozoan Hsp90 orthologue, specifically through the auspices of functionalization of an amine embedded into the scaffold.

View Article and Find Full Text PDF

Though malaria mortality rates are down 48% globally since 2000, reported occurrences of resistance against current therapeutics threaten to reverse that progress. Recently, antimalarials that were once considered unsuitable therapeutic agents have been revisited to improve physicochemical properties and efficacy required for selection as a drug candidate. One such compound is 4(1H)-quinolone ICI 56,780, which is known to be a causal prophylactic that also displays blood schizonticidal activity against P.

View Article and Find Full Text PDF

Bastimolide A (1), a polyhydroxy macrolide with a 40-membered ring, was isolated from a new genus of the tropical marine cyanobacterium Okeania hirsuta. This novel macrolide was defined by spectroscopy and chemical reactions to possess one 1,3-diol, one 1,3,5-triol, six 1,5-diols, and one tert-butyl group; however, the relationships of these moieties to one another were obscured by a highly degenerate (1)H NMR spectrum. Its complete structure and absolute configuration were therefore unambiguously determined by X-ray diffraction analysis of the nona-p-nitrobenzoate derivative (1d).

View Article and Find Full Text PDF

The continued proliferation of malaria throughout temperate and tropical regions of the world has promoted a push for more efficacious treatments to combat the disease. Unfortunately, more recent remedies such as artemisinin combination therapies have been rendered less effective due to developing parasite resistance, and new drugs are required that target the parasite in the liver to support the disease elimination efforts. Research was initiated to revisit antimalarials developed in the 1940s and 1960s that were deemed unsuitable for use as therapeutic agents as a result of poor understanding of both physicochemical properties and parasitology.

View Article and Find Full Text PDF

With the exception of primaquine, tafenoquine, and atovaquone, there are very few antimalarials that target liver stage parasites. In this study, a transgenic Plasmodium berghei parasite (1052Cl1; PbGFP-Luc(con)) that expresses luciferase was used to assess the anti-liver stage parasite activity of ICI 56,780, a 7-(2-phenoxyethoxy)-4(1H)-quinolone (PEQ), as well as two 3-phenyl-4(1H)-quinolones (P4Q), P4Q-146 and P4Q-158, by using bioluminescent imaging (BLI). Results showed that all of the compounds were active against liver stage parasites; however, ICI 56,780 and P4Q-158 were the most active, with low nanomolar activity in vitro and causal prophylactic activity in vivo.

View Article and Find Full Text PDF

ICI 56,780 (5) displayed causal prophylactic and blood schizonticidal activity (ED50=0.05 mg/kg) in rodent malaria models but produced rapid acquisition of parasitological resistance in P. berghei infected mice.

View Article and Find Full Text PDF

Antimalarial activity of 1,2,3,4-tetrahydroacridin-9(10H)-ones (THAs) has been known since the 1940s and has garnered more attention with the development of the acridinedione floxacrine (1) in the 1970s and analogues thereof such as WR 243251 (2a) in the 1990s. These compounds failed just prior to clinical development because of suboptimal activity, poor solubility, and rapid induction of parasite resistance. Moreover, detailed structure-activity relationship (SAR) studies of the THA core scaffold were lacking and SPR studies were nonexistent.

View Article and Find Full Text PDF

Since the 1940s endochin and analogues thereof were known to be causal prophylactic and potent erythrocytic stage agents in avian models. Preliminary screening in a current in vitro assay identified several 4(1H)-quinolones with nanomolar EC(50) against erythrocytic stages of multidrug resistant W2 and TM90-C2B isolates of Plasmodium falciparum. Follow-up structure-activity relationship (SAR) studies on 4(1H)-quinolone analogues identified several key features for biological activity.

View Article and Find Full Text PDF