Curr Opin Struct Biol
December 2024
Since genome sequencing became accessible, determining how specific differences in genotypes lead to complex phenotypes such as disease has become one of the key goals in biomedicine. Predicting effects of sequence variants on cellular or organismal phenotype faces several challenges. First, variants simultaneously affect multiple protein properties and predicting their combined effect is complex.
View Article and Find Full Text PDFAllosteric regulation is central to protein function in cellular networks. A fundamental open question is whether cellular regulation of allosteric proteins occurs only at a few defined positions or at many sites distributed throughout the structure. Here, we probe the regulation of GTPases-protein switches that control signaling through regulated conformational cycling-at residue-level resolution by deep mutagenesis in the native biological network.
View Article and Find Full Text PDFMolecular switch proteins whose cycling between states is controlled by opposing regulators are central to biological signal transduction. As switch proteins function within highly connected interaction networks, the fundamental question arises of how functional specificity is achieved when different processes share common regulators. Here we show that functional specificity of the small GTPase switch protein Gsp1 in Saccharomyces cerevisiae (the homologue of the human protein RAN) is linked to differential sensitivity of biological processes to different kinetics of the Gsp1 (RAN) switch cycle.
View Article and Find Full Text PDFAn outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic disruption. There are currently no antiviral drugs with proven efficacy nor are there vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular details of SARS-CoV-2 infection.
View Article and Find Full Text PDFA newly described coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than 160,000 individuals and caused worldwide social and economic disruption. There are no antiviral drugs with proven clinical efficacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and efforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells.
View Article and Find Full Text PDFEvolution and design of protein complexes are almost always viewed through the lens of amino acid mutations at protein interfaces. We showed previously that residues not involved in the physical interaction between proteins make important contributions to oligomerization by acting indirectly or allosterically. In this work, we sought to investigate the mechanism by which allosteric mutations act, using the example of the PyrR family of pyrimidine operon attenuators.
View Article and Find Full Text PDFMicrobial communities represent the largest portion of the Earth's biomass. Metagenomics projects use high-throughput sequencing to survey these communities and shed light on genetic capabilities that enable microbes to inhabit every corner of the biosphere. Metagenome studies are generally based on (i) classifying and ranking functions of identified genes; and (ii) estimating the phyletic distribution of constituent microbial species.
View Article and Find Full Text PDFCurr Opin Struct Biol
December 2013
Here we review mechanisms of protein evolution leading to structural changes in protein complexes. These mechanisms include mutations directly within protein interfaces, as well as the effects of mutations that propagate from distant regions of the protein. We also discuss the constraints protein complex structures impose on sequence evolution.
View Article and Find Full Text PDFIs the order in which proteins assemble into complexes important for biological function? Here, we seek to address this by searching for evidence of evolutionary selection for ordered protein complex assembly. First, we experimentally characterize the assembly pathways of several heteromeric complexes and show that they can be simply predicted from their three-dimensional structures. Then, by mapping gene fusion events identified from fully sequenced genomes onto protein complex assembly pathways, we demonstrate evolutionary selection for conservation of assembly order.
View Article and Find Full Text PDFAll proteins require physical interactions with other proteins in order to perform their functions. Most of them oligomerize into homomers, and a vast majority of these homomers interact with other proteins, at least part of the time, forming transient or obligate heteromers. In the present paper, we review the structural, biophysical and evolutionary aspects of these protein interactions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2012
Oligomerization plays an important role in the function of many proteins. Thus, understanding, predicting, and, ultimately, engineering oligomerization presents a long-standing interest. From the perspective of structural biology, protein-protein interactions have mainly been analyzed in terms of the biophysical nature and evolution of protein interfaces.
View Article and Find Full Text PDFAbstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed.
View Article and Find Full Text PDFCurr Opin Struct Biol
June 2010
The role of ubiquitin in many of the known cellular processes, not just protein degradation, is based on its unique ability to bind a range of proteins that are structurally and functionally different. To understand how ubiquitin can bind to proteins with different structures, we review the extent of the conservation and variation that occur in the structures of two free ubiquitins and ubiquitins in 16 complexes that have been determined at high resolution (1.2-2A).
View Article and Find Full Text PDFWrnip1 (Werner helicase-interacting protein 1) has been implicated in the bypass of stalled replication forks in bakers' yeast. However, the function(s) of human Wrnip1 has remained elusive so far. Here we report that Wrnip1 is distributed inside heterogeneous structures detectable in nondamaged cells throughout the cell cycle.
View Article and Find Full Text PDF