Publications by authors named "Tina M Thornton"

Background: COVID-19 quickly spread to pandemic proportions, resulting in anxiety and fear for many students. The Fear of Contagion model was explored in first-semester nursing students.

Method: This study used a qualitative design with content analysis of narrative responses to questions derived from the Fear of Contagion model and an a priori template based on the model.

View Article and Find Full Text PDF
Article Synopsis
  • Chemotherapy is the main treatment for most cancers, but the effectiveness is often reduced due to drug resistance caused by ATP-binding cassette (ABC) transporters, which pump drugs out of cells.
  • Researchers found that these transporters use mitochondria-derived ATP for energy and that a protein called MCJ helps regulate this process.
  • By creating MCJ mimetics that lower mitochondrial respiration, they aim to enhance chemotherapy effectiveness and potentially improve treatment outcomes for cancer patients.
View Article and Find Full Text PDF

GSK3β is a constitutively active kinase that promotes cell death, which requires strict regulatory mechanisms. Although Akt-mediated phosphorylation at Ser is the default mechanism to inactivate GSK3β, phosphorylation of GSK3β at Ser by p38 MAPK has emerged as an alternative inhibitory pathway that provides cell protection and repair in response to DNA damage. Phosphorylation of Ser GSK3β has been detected in adult brain, where it has been related to neuronal survival and behavior.

View Article and Find Full Text PDF

Recent reports demonstrate that DNA damage is induced, and rapidly repaired, in circuits activated by experience. Moreover, stress hormones are known to slow DNA repair, suggesting that prolonged stress may result in persistent DNA damage. Prolonged stress is known to negatively impact physical and mental health; however, DNA damage as a factor in stress pathology has only begun to be explored.

View Article and Find Full Text PDF

GSK3β plays an essential role in promoting cell death and is emerging as a potential target for neurological diseases. Understanding the mechanisms that control neuronal GSK3β is critical. A ubiquitous mechanism to repress GSK3β involves Akt-mediated phosphorylation of Ser.

View Article and Find Full Text PDF

Mitochondrial respiration is regulated in CD8(+) T cells during the transition from naive to effector and memory cells, but mechanisms controlling this process have not been defined. Here we show that MCJ (methylation-controlled J protein) acted as an endogenous break for mitochondrial respiration in CD8(+) T cells by interfering with the formation of electron transport chain respiratory supercomplexes. Metabolic profiling revealed enhanced mitochondrial metabolism in MCJ-deficient CD8(+) T cells.

View Article and Find Full Text PDF

Variable, diversity and joining (V(D)J) recombination and immunoglobulin class switch recombination (CSR) are key processes in adaptive immune responses that naturally generate DNA double-strand breaks (DSBs) and trigger a DNA repair response. It is unclear whether this response is associated with distinct survival signals that protect T and B cells. Glycogen synthase kinase 3β (GSK3β) is a constitutively active kinase known to promote cell death.

View Article and Find Full Text PDF

IL-6 plays an important role in determining the fate of effector CD4 cells and the cytokines that these cells produce. Here we identify a novel molecular mechanism by which IL-6 regulates CD4 cell effector function. We show that IL-6-dependent signal facilitates the formation of mitochondrial respiratory chain supercomplexes to sustain high mitochondrial membrane potential late during activation of CD4 cells.

View Article and Find Full Text PDF

Multiple sclerosis (MS), the most common disabling neurologic disease of young adults, is considered a classical T cell-mediated disease and is characterized by demyelination, axonal damage, and progressive neurological dysfunction. The currently available disease-modifying therapies are limited in their efficacy, and improved understanding of new pathways contributing to disease pathogenesis could reveal additional novel therapeutic targets. The p38 mitogen-activated protein kinase (MAPK) signaling pathway is known to be triggered by stress stimuli and to contribute to inflammatory responses.

View Article and Find Full Text PDF

NKT cells are known to rapidly produce a large amount of cytokines upon activation. Although a number of signaling pathways that regulate the development of NKT cells have been identified, the signaling pathways involved in the regulation of NKT cell cytokine production remain unclear. In this study, we show that the p38 MAPK pathway is dispensable for the development of NKT cells.

View Article and Find Full Text PDF

p38 MAP kinase (MAPK) is activated in response to environmental stress, cytokines and DNA damage, and mediates death, cell differentiation and cell cycle checkpoints. The intracellular localization of p38 MAPK upon activation remains unclear, and may depend on the stimulus. We show here that activation of p38 MAPK by stimuli that induce DNA double strand breaks (DSBs), but not other stimuli, leads to its nuclear translocation.

View Article and Find Full Text PDF

The p38 MAPK kinase pathway is activated in response to a wide range of cellular stress stimuli and cytokines. Our understanding of the important functions of p38 MAPK in the process of differentiation and cell death has grown considerably in the recent years and is now relatively established. Here we discuss the role of p38 MAPK in the mediation of cell cycle checkpoints and cell survival, processes that have received less attention.

View Article and Find Full Text PDF

Glycogen synthase kinase 3beta (GSK3beta) is involved in metabolism, neurodegeneration, and cancer. Inhibition of GSK3beta activity is the primary mechanism that regulates this widely expressed active kinase. Although the protein kinase Akt inhibits GSK3beta by phosphorylation at the N terminus, preventing Akt-mediated phosphorylation does not affect the cell-survival pathway activated through the GSK3beta substrate beta-catenin.

View Article and Find Full Text PDF

B cell activating transcription factor (BATF) belongs to the activator protein-1 (AP-1) superfamily of basic leucine zipper transcription factors and forms heterodimers with Jun that possess minimal transcriptional activity. Mice carrying a p56(lck)HA-BATF transgene were created to observe the effects of constitutive expression of this well-characterized AP-1 inhibitor on T cell proliferation. Consistent with the role of AP-1 in promoting the proliferation of many cell types, BATF-transgenic thymocytes proliferate poorly in vitro when stimulated with anti-CD3epsilon and anti-CD28 antibodies or with Concanavalin A.

View Article and Find Full Text PDF

BATF is a member of the AP-1 (activator protein-1) family of bZIP (basic leucine zipper) transcription factors that form transcriptionally inhibitory, DNA binding heterodimers with Jun proteins. In the present study, we demonstrate that BATF is phosphorylated in vivo on multiple serine and threonine residues and at least one tyrosine residue. Reverse-polarity PAGE revealed that serine-43 and threonine-48 within the DNA binding domain of BATF are phosphorylated.

View Article and Find Full Text PDF

The immortalization of human B lymphocytes by Epstein-Barr virus (EBV) requires the virus-encoded transactivator EBNA2 and the products of both viral and cellular genes which serve as EBNA2 targets. In this study, we identified BATF as a cellular gene that is up-regulated dramatically within 24 h following the infection of established and primary human B cells with EBV. The transactivation of BATF is mediated by EBNA2 in a B-cell-specific manner and is duplicated in non-EBV-infected B cells by the expression of mammalian Notch proteins.

View Article and Find Full Text PDF

SPY (SPINDLY) encodes a putative O-linked N-acetyl-glucosamine transferase that is genetically defined as a negatively acting component of the gibberellin (GA) signal transduction pathway. Analysis of Arabidopsis plants containing a SPY::GUS reporter gene reveals that SPY is expressed throughout the life of the plant and in most plant organs examined. In addition to being expressed in all organs where phenotypes due to spy mutations have been reported, SPY::GUS is expressed in the root.

View Article and Find Full Text PDF