Counter-balancing regulatory mechanisms, such as the induction of regulatory T cells (Treg), limit the effects of autoimmune attack in neuroinflammation. However, the role of dendritic cells (DCs) as the most powerful antigen-presenting cells, which are intriguing therapeutic targets in this context, is not fully understood. Here, we demonstrate that conditional ablation of DCs during the priming phase of myelin-specific T cells in experimental autoimmune encephalomyelitis (EAE) selectively aborts inducible Treg (iTreg) induction, whereas generation of T helper (Th)1/17 cells is unaltered.
View Article and Find Full Text PDFMultiple sclerosis (MS) is an inflammatory disease of the CNS thought to be driven by CNS-specific T lymphocytes. Although CD8(+) T cells are frequently found in multiple sclerosis lesions, their distinct role remains controversial because direct signs of cytotoxicity have not been confirmed in vivo. In the present work, we determined that murine ovalbumin-transgenic (OT-1) CD8(+) T cells recognize the myelin peptide myelin oligodendrocyte glycoprotein 40-54 (MOG40-54) both in vitro and in vivo.
View Article and Find Full Text PDFThe maturation status of dendritic cells determines whether interacting T cells are activated or if they become tolerant. Previously we could induce T cell tolerance by applying a 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitor (HMGCRI) atorvastatin, which also modulates MHC class II expression and has therapeutic potential in autoimmune disease. Here, we aimed at elucidating the impact of this therapeutic strategy on T cell differentiation as a consequence of alterations in dendritic cell function.
View Article and Find Full Text PDFT cells have an essential role in the induction of multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). Although for CD4(+) T cells it is well established that they contribute to the disease, less is known about the role of CD8(+) T cells. Our aim was to determine the individual contribution of CD4(+) and CD8(+) T cells in myelin oligodendrocyte glycoprotein (MOG)35-55-induced EAE.
View Article and Find Full Text PDFBackground: Two-photon laser scanning microscopy (TPLSM) has become a powerful tool in the visualization of immune cell dynamics and cellular communication within the complex biological networks of the inflamed central nervous system (CNS). Whereas many previous studies mainly focused on the role of effector or effector memory T cells, the role of naïve T cells as possible key players in immune regulation directly in the CNS is still highly debated.
Methods: We applied ex vivo and intravital TPLSM to investigate migratory pathways of naïve T cells in the inflamed and non-inflamed CNS.
Neuronal damage in autoimmune neuroinflammation is the correlate for long-term disability in multiple sclerosis (MS) patients. Here, we investigated the role of immune cells in neuronal damage processes in animal models of MS by monitoring experimental autoimmune encephalomyelitis (EAE) by using two-photon microscopy of living anaesthetized mice. In the brainstem, we detected sustained interaction between immune and neuronal cells, particularly during disease peak.
View Article and Find Full Text PDFDC are professional APC that instruct T cells during the inflammatory course of EAE. We have previously shown that MAPK3 (Erk1) is important for the induction of T-cell anergy. Our goal was to determine the influence of MAPK3 on the capacity of DC to arm T-cell responses in autoimmunity.
View Article and Find Full Text PDFChronic inflammation in various organs, such as the brain, implies that different subpopulations of immune cells interact with the cells of the target organ. To monitor this cellular communication both morphologically and functionally, the ability to visualize more than two colors in deep tissue is indispensable. Here, we demonstrate the pronounced power of optical parametric oscillator (OPO)-based two-photon laser scanning microscopy for dynamic intravital imaging in hardly accessible organs of the central nervous and of the immune system, with particular relevance for long-term investigations of pathological mechanisms (e.
View Article and Find Full Text PDFIn the course of autoimmune CNS inflammation, inflammatory infiltrates form characteristic perivascular lymphocyte cuffs by mechanisms that are not yet well understood. Here, intravital two-photon imaging of the brain in anesthetized mice, with experimental autoimmune encephalomyelitis, revealed the highly dynamic nature of perivascular immune cells, refuting suggestions that vessel cuffs are the result of limited lymphocyte motility in the CNS. On the contrary, vessel-associated lymphocyte motility is an actively promoted mechanism which can be blocked by CXCR4 antagonism.
View Article and Find Full Text PDFThe CRT (creatine transporter) is a member of the Na+- and Cl--dependent neurotransmitter transporter family and is responsible for the import of creatine into cells, and thus is important for cellular energy metabolism. We established for CRT an expression system in HEK-293 cells that allowed biochemical, immunological and functional analysis of CRT wild-type and glycosylation-deficient mutants. Analysis of HA (haemagglutinin)-tagged CRT-NN (wild-type rat CRT with an HA-tag at the C-terminus) revealed several monomeric immunoreactive species with apparent molecular masses of 58, 48 and 43 kDa.
View Article and Find Full Text PDF