The small GTPase Ras is a critical regulator of cell growth and proliferation. Its activity is frequently dysregulated in cancers, prompting decades of work to pharmacologically target Ras. Understanding Ras biology and developing effective Ras therapeutics both require probing Ras activity in its native context, yet tools to measure its activities in cellulo are limited.
View Article and Find Full Text PDFThe mitogen-activated protein kinase (MAPK) pathway is a critical effector of oncogenic RAS signaling, and MAPK pathway inhibition may be an effective combination treatment strategy. We performed genome-scale loss-of-function CRISPR-Cas9 screens in the presence of a MEK1/2 inhibitor (MEKi) in KRAS-mutant pancreatic and lung cancer cell lines and identified genes that cooperate with MEK inhibition. While we observed heterogeneity in genetic modifiers of MEKi sensitivity across cell lines, several recurrent classes of synthetic lethal vulnerabilities emerged at the pathway level.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2019
Oncogenic mutations in the small GTPase KRAS are frequently found in human cancers, and, currently, there are no effective targeted therapies for these tumors. Using a combinatorial siRNA approach, we analyzed a panel of mutant colorectal and pancreatic cancer cell lines for their dependency on 28 gene nodes that represent canonical RAS effector pathways and selected stress response pathways. We found that RAF node knockdown best differentiated mutant and WT cancer cells, suggesting RAF kinases are key oncoeffectors for addiction.
View Article and Find Full Text PDFKRAS can bind numerous effector proteins, which activate different downstream signaling events. The best known are RAF, phosphatidylinositide (PI)-3' kinase, and RalGDS families, but many additional direct and indirect effectors have been reported. We have assessed how these effectors contribute to several major phenotypes in a quantitative way, using an arrayed combinatorial siRNA screen in which we knocked down 41 KRAS effectors nodes in 92 cell lines.
View Article and Find Full Text PDFUnlabelled: RNAi is a powerful tool for target identification and can lead to novel therapies for pharmacologically intractable targets such as KRAS. RNAi therapy must combine potent siRNA payloads with reliable in vivo delivery for efficient target inhibition. We used a functional "Sensor" assay to establish a library of potent siRNAs against RAS pathway genes and to show that they efficiently suppress their targets at low dose.
View Article and Find Full Text PDFRas proteins mediate PI3K activation through direct binding to p110 catalytic subunits. However, it is unclear when and where this interaction occurs. In this issue of Cancer Cell, Castellano and colleagues report that KRAS-driven lung cancers require the Ras-p110α interaction for full activation of PI3K and tumor maintenance.
View Article and Find Full Text PDFBackground: Cell-to-cell variability in populations has been widely observed in mammalian cells. This heterogeneity can result from random stochastic events or can be deliberately maintained through regulatory processes. In the latter case, heterogeneity should confer a selective advantage that benefits the entire population.
View Article and Find Full Text PDFThe phosphoinositide-3-kinase (PI3K) family of lipid kinases has been well conserved from yeast to mammals. In this evolutionary perspective on the PI3K family, we discuss the prototypical properties of PI3Ks: 1) the utilization of sparse but specifically localized lipid substrates; 2) the nucleation signaling complexes at membrane-targeted sites; and 3) the integration of intracellular signaling with extracellular cues. Together, these three core properties serve to establish order within the entropic environment of the cell.
View Article and Find Full Text PDFThe E2F family of transcription factors, in association with pocket protein family members, are important for regulating genes required for cellular proliferation. The most abundant E2F, E2F4, is implicated in maintaining the G(0)/G(1) cell cycle state via transcriptional repression of genes that encode proteins required for S-phase progression. Here, we investigate E2F4's role in bone development using E2f4 germline mutant mice.
View Article and Find Full Text PDFThe retinoblastoma gene, RB-1, was the first identified tumor suppressor. Rb(-/-) mice die in mid-gestation with defects in proliferation, differentiation and apoptosis. The activating E2F transcription factors, E2F1-3, contribute to these embryonic defects, indicating that they are key downstream targets of the retinoblastoma protein, pRB.
View Article and Find Full Text PDFMutation of the retinoblastoma (RB) tumor suppressor gene is strongly linked to osteosarcoma formation. This observation and the documented interaction between the retinoblastoma protein (pRb) and Runx2 suggests that pRb is important in bone development. To assess this hypothesis, we used a conditional knockout strategy to generate pRb-deficient embryos that survive to birth.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2008
PI3K is important in the regulation of growth, proliferation, and survival of tumor cells. We show that class 1A PI3K is also critical in the tumor microenvironment by regulating the integrity of the tumor vasculature. Using Tie2Cre-mediated deletion of the PI3K regulatory subunits (p85alpha, p55alpha, p50alpha, and p85beta), we generated mice with endothelial cell-specific loss of class 1A PI3K.
View Article and Find Full Text PDFThe tumor suppressor function of the retinoblastoma protein pRB is largely dependent upon its capacity to inhibit the E2F transcription factors and thereby cell proliferation. Attempts to study the interplay between pRB and the E2Fs have been hampered by the prenatal death of Rb; E2f nullizygous mice. In this study, we isolated Rb; E2f3 mutant embryonic stem cells and generated Rb(-/-); E2f3(-/-) chimeric mice, thus bypassing the lethality of the Rb(-/-); E2f3(-/-) germ line mutant mice.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2003
The E2F and pocket protein families are known to play an important role in the regulation of both cellular proliferation and terminal differentiation. In this study, we have used compound E2F and pocket protein mutant mouse embryonic fibroblasts to dissect the role of these proteins in adipogenesis. This analysis shows that loss of E2F4 allows cells to undergo spontaneous differentiation.
View Article and Find Full Text PDF