Linear free energy relationships (LFERs) for substituent effects on reactions that proceed through similar transition states provide insight into transition state structures. A classical approach to the analysis of LFERs showed that differences in the slopes of Brønsted correlations for addition of substituted alkyl alcohols to ring-substituted 1-phenylethyl carbocations and to the β-galactopyranosyl carbocation intermediate of reactions catalyzed by β-galactosidase provide evidence that the enzyme catalyst modifies the curvature of the energy surface at the saddle point for the transition state for nucleophile addition. We have worked to generalize the use of LFERs in the determination of enzyme mechanisms.
View Article and Find Full Text PDFThe activation barriers Δ for / for the reactions of whole substrates catalyzed by 6-phosphogluconate dehydrogenase, glucose 6-phosphate dehydrogenase, and glucose 6-phosphate isomerase are reduced by 11-13 kcal/mol by interactions between the protein and the substrate phosphodianion. Between 4 and 6 kcal/mol of this dianion binding energy is expressed at the transition state for phosphite dianion activation of the respective enzyme-catalyzed reactions of truncated substrates d-xylonate or d-xylose. These and earlier results from studies on β-phosphoglucomutase, triosephosphate isomerase, and glycerol 3-phosphate dehydrogenase define a cluster of six enzymes that catalyze reactions in glycolysis or of glycolytic intermediates, and which utilize substrate dianion binding energy for enzyme activation.
View Article and Find Full Text PDFWe report results of detailed empirical valence bond simulations that model the effect of several amino acid substitutions on the thermodynamic (Δ°) and kinetic activation (Δ) barriers to deprotonation of dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate (GAP) bound to wild-type triosephosphate isomerase (TIM), as well as to the K12G, E97A, E97D, E97Q, K12G/E97A, I170A, L230A, I170A/L230A, and P166A variants of this enzyme. The EVB simulations model the observed effect of the P166A mutation on protein structure. The E97A, E97Q, and E97D mutations of the conserved E97 side chain result in ≤1.
View Article and Find Full Text PDFKinetic parameters (s) and / (M s) are reported for exchange for deuterium in DO of the C-6 hydrogen of 5-fluororotidine 5'-monophosphate () catalyzed by the Q215A, Y217F, and Q215A/Y217F variants of yeast orotidine 5'-monophosphate decarboxylase (OMPDC) at pD 8.1, and by the Q215A variant at pD 7.1-9.
View Article and Find Full Text PDFWe report the results of a study of the catalytic role of a network of four interacting amino acid side chains at yeast orotidine 5'-monophosphate decarboxylase ( ScOMPDC), by the stepwise replacement of all four side chains. The H-bond, which links the -CHOH side chain of S154 from the pyrimidine umbrella loop of ScOMPDC to the amide side chain of Q215 in the phosphodianion gripper loop, creates a protein cage for the substrate OMP. The role of this interaction in optimizing transition state stabilization from the dianion gripper side chains Q215, Y217, and R235 was probed by determining the kinetic parameter k/ K for 16 enzyme variants, which include all combinations of single, double, triple, and quadruple S154A, Q215A, Y217F, and R235A mutations.
View Article and Find Full Text PDFLarge primary deuterium kinetic isotope effects (1° DKIEs) on enzyme-catalyzed hydride transfer may be observed when the transferred hydride tunnels through the energy barrier. The following 1° DKIEs on k/ K and relative reaction driving force are reported for wild-type and mutant glycerol-3-phosphate dehydrogenase (GPDH)-catalyzed reactions of NADL (L = H, D): wild-type GPDH, ΔΔ G = 0 kcal/mol, 1° DKIE = 1.5; N270A, 5.
View Article and Find Full Text PDFWe report pH rate profiles for k and K for the isomerization reaction of glyceraldehyde 3-phosphate catalyzed by wildtype triosephosphate isomerase (TIM) from three organisms and by ten mutants of TIM; and, for K for inhibition of this reaction by phosphoglycolate trianion (I). The pH profiles for K show that the binding of I to TIM (E) to form EH·I is accompanied by uptake of a proton by the carboxylate side-chain of E165, whose function is to abstract a proton from substrate. The complexes for several mutants exist mainly as E·I at high pH, in which cases the pH profiles define the p K for deprotonation of EH·I.
View Article and Find Full Text PDFThe mystery associated with catalysis by what were once regarded as protein black boxes, diminished with the X-ray crystallographic determination of the three-dimensional structures of enzyme-substrate complexes. The report that several high-resolution X-ray crystal structures of orotidine 5'-monophosphate decarboxylase (OMPDC) failed to provide a consensus mechanism for enzyme-catalyzed decarboxylation of OMP to form uridine 5'-monophosphate, therefore, provoked a flurry of controversy. This controversy was fueled by the enormous 10-fold rate acceleration for this enzyme, which had " jolted many biochemists' assumptions about the catalytic potential of enzymes.
View Article and Find Full Text PDFWe have previously performed empirical valence bond calculations of the kinetic activation barriers, Δ G, for the deprotonation of complexes between TIM and the whole substrate glyceraldehyde-3-phosphate (GAP, Kulkarni et al. J. Am.
View Article and Find Full Text PDFThe side chain of Q295 of glycerol-3-phosphate dehydrogenase from human liver ( hlGPDH) lies in a flexible loop, that folds over the phosphodianion of substrate dihydroxyacetone phosphate (DHAP). Q295 interacts with the side-chain cation from R269, which is ion-paired to the substrate phosphodianion. Kinetic parameters k/ K (M s) and k/ K K (M s) were determined, respectively, for catalysis of the reduction of DHAP and for dianion activation of catalysis of reduction of glycolaldehyde (GA) catalyzed by wild-type, Q295G, Q295S, Q295A, and Q295N mutants of hlGPDH.
View Article and Find Full Text PDFOrotidine 5'-monophosphate decarboxylase (OMPDC) catalyzes the decarboxylation of 5-fluoroorotate (FO) with k/K = 1.4 × 10 M s. Combining this and related kinetic parameters shows that the 31 kcal/mol stabilization of the transition state for decarboxylation of OMP provided by OMPDC represents the sum of 11.
View Article and Find Full Text PDFMethods are described for the determination of ps for weak carbon acids in water. The application of these methods to the determination of the ps for a variety of carbon acids including nitriles, imidazolium cations, amino acids, peptides and their derivatives and, α-iminium cations is presented. The substituent effects on the acidity of these different classes of carbon acids are discussed; and, the relevance of these results to catalysis of the deprotonation of amino acids by enzymes and by pyridoxal 5'-phosphate is reviewed.
View Article and Find Full Text PDFThere is no consensus of opinion on the origin of the large rate accelerations observed for enzyme-catalyzed hydride transfer. The interpretation of recent results from studies on hydride transfer reactions catalyzed by alcohol dehydrogenase (ADH) focus on the proposal that the effective barrier height is reduced by quantum-mechanical tunneling through the energy barrier. This interpretation contrasts sharply with the notion that enzymatic rate accelerations are obtained through direct stabilization of the transition state for the nonenzymatic reaction in water.
View Article and Find Full Text PDFA simple and convenient method is described to determine primary deuterium kinetic isotope effects (1°DKIEs) on reactions where the hydron incorporated into the reaction product is derived from solvent water. The 1°DKIE may be obtained by H NMR analyses as the ratio of the yields of H- and D-labeled products from a reaction in 50:50 (v/v) HOH/DOD. The procedures for these H NMR analyses are reviewed.
View Article and Find Full Text PDFTriosephosphate isomerase (TIM) is a proficient catalyst of the reversible isomerization of dihydroxyacetone phosphate (DHAP) to d-glyceraldehyde phosphate (GAP), via general base catalysis by E165. Historically, this enzyme has been an extremely important model system for understanding the fundamentals of biological catalysis. TIM is activated through an energetically demanding conformational change, which helps position the side chains of two key hydrophobic residues (I170 and L230), over the carboxylate side chain of E165.
View Article and Find Full Text PDFThe stabilization of the transition state for hlGPDH-catalyzed reduction of DHAP due to the action of the phosphodianion of DHAP and the cationic side chain of R269 is between 12.4 and 17 kcal/mol. The R269A mutation of glycerol-3-phosphate dehydrogenase (hlGPDH) results in a 9.
View Article and Find Full Text PDFPrimary deuterium kinetic isotope effects (1°DKIE) on (k/K, M s) for dianion (X) activated hydride transfer from NADL to glycolaldehyde (GA) catalyzed by glycerol-3-phosphate dehydrogenase were determined over a 2100-fold range of enzyme reactivity: (X, 1°DKIE); FPO, 2.8 ± 0.1; HPO, 2.
View Article and Find Full Text PDFKinetic parameters are reported for the reactions of whole substrates (kcat/Km, M(-1) s(-1)) (R)-glyceraldehyde 3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP) and for the substrate pieces [(kcat/Km)E·HPi/Kd, M(-2) s(-1)] glycolaldehyde (GA) and phosphite dianion (HPi) catalyzed by the I172A/L232A mutant of triosephosphate isomerase from Trypanosoma brucei brucei (TbbTIM). A comparison with the corresponding parameters for wild-type, I172A, and L232A TbbTIM-catalyzed reactions shows that the effect of I172A and L232A mutations on ΔG(⧧) for the wild-type TbbTIM-catalyzed reactions of the substrate pieces is nearly the same as the effect of the same mutations on TbbTIM previously mutated at the second side chain. This provides strong evidence that mutation of the first hydrophobic side chain does not affect the functioning of the second side chain in catalysis of the reactions of the substrate pieces.
View Article and Find Full Text PDFThe side chains of R269 and N270 interact with the phosphodianion of dihydroxyacetone phosphate (DHAP) bound to glycerol 3-phosphate dehydrogenase (GPDH). The R269A, N270A, and R269A/N270A mutations of GPDH result in 9.1, 5.
View Article and Find Full Text PDFJ Am Chem Soc
December 2015
The side chains of Y208 and S211 from loop 7 of triosephosphate isomerase (TIM) form hydrogen bonds to backbone amides and carbonyls from loop 6 to stabilize the caged enzyme-substrate complex. The effect of seven mutations [Y208T, Y208S, Y208A, Y208F, S211G, S211A, Y208T/S211G] on the kinetic parameters for TIM catalyzed reactions of the whole substrates dihydroxyacetone phosphate and d-glyceraldehyde 3-phosphate [(k(cat)/K(m))(GAP) and (k(cat)/K(m))DHAP] and of the substrate pieces glycolaldehyde and phosphite dianion (k(cat)/K(HPi)K(GA)) are reported. The linear logarithmic correlation between these kinetic parameters, with slope of 1.
View Article and Find Full Text PDFThe caged complex between orotidine 5'-monophosphate decarboxylase (ScOMPDC) and 5-fluoroorotidine 5'-monophosphate (FOMP) undergoes decarboxylation ∼300 times faster than the caged complex between ScOMPDC and the physiological substrate, orotidine 5'-monophosphate (OMP). Consequently, the enzyme conformational changes required to lock FOMP at a protein cage and release product 5-fluorouridine 5'-monophosphate (FUMP) are kinetically significant steps. The caged form of ScOMPDC is stabilized by interactions between the side chains from Gln215, Tyr217, and Arg235 and the substrate phosphodianion.
View Article and Find Full Text PDFThe side chain cation of R269 lies at the surface of l-glycerol 3-phosphate dehydrogenase (GPDH) and forms an ion pair to the phosphodianion of substrate dihydroxyacetone phosphate (DHAP), which is buried at the nonpolar protein interior. The R269A mutation of GPDH results in a 110-fold increase in K(m) (2.8 kcal/mol effect) and a 41,000-fold decrease in k(cat) (6.
View Article and Find Full Text PDFThe kinetic parameters for activation of yeast triosephosphate isomerase (ScTIM), yeast orotidine monophosphate decarboxylase (ScOMPDC), and human liver glycerol 3-phosphate dehydrogenase (hlGPDH) for catalysis of reactions of their respective phosphodianion truncated substrates are reported for the following oxydianions: HPO3(2-), FPO3(2-), S2O3(2-), SO4(2-) and HOPO3(2-). Oxydianions bind weakly to these unliganded enzymes and tightly to the transition state complex (E·S(‡)), with intrinsic oxydianion Gibbs binding free energies that range from -8.4 kcal/mol for activation of hlGPDH-catalyzed reduction of glycolaldehyde by FPO3(2-) to -3.
View Article and Find Full Text PDFThe mechanism for activation of orotidine 5'-monophosphate decarboxylase (OMPDC) by interactions of side chains from Gln215 and Try217 at a gripper loop and R235, adjacent to this loop, with the phosphodianion of OMP was probed by determining the kinetic parameters k(cat) and K(m) for all combinations of single, double, and triple Q215A, Y217F, and R235A mutations. The 12 kcal/mol intrinsic binding energy of the phosphodianion is shown to be equal to the sum of the binding energies of the side chains of R235 (6 kcal/mol), Q215 (2 kcal/mol), Y217 (2 kcal/mol), and hydrogen bonds to the G234 and R235 backbone amides (2 kcal/mol). Analysis of a triple mutant cube shows small (ca.
View Article and Find Full Text PDFTwo mutations of the phosphodianion gripper loop in chicken muscle triosephosphate isomerase (cTIM) were examined: (1) the loop deletion mutant (LDM) formed by removal of residues 170-173 [Pompliano, D. L., et al.
View Article and Find Full Text PDF