The functional brain connectome is highly dynamic over time. However, how brain connectome dynamics evolves during the third trimester of pregnancy and is associated with later cognitive growth remains unknown. Here, we use resting-state functional Magnetic Resonance Imaging (MRI) data from 39 newborns aged 32 to 42 postmenstrual weeks to investigate the maturation process of connectome dynamics and its role in predicting neurocognitive outcomes at 2 years of age.
View Article and Find Full Text PDFFunctional connectome gradients represent fundamental organizing principles of the brain. Here, we report the development of the connectome gradients in preterm and term babies aged 31-42 postmenstrual weeks using task-free functional MRI and its association with postnatal cognitive growth. We show that the principal sensorimotor-to-visual gradient is present during the late preterm period and continuously evolves toward a term-like pattern.
View Article and Find Full Text PDFCerebral cortical architecture at birth encodes regionally differential dendritic arborization and synaptic formation. It underlies behavioral emergence of 2-year-olds. Brain changes in 0-2 years are most dynamic across the lifespan.
View Article and Find Full Text PDFDuring the third trimester, the human brain undergoes rapid cellular and molecular processes that reshape the structural architecture of the cerebral cortex. Knowledge of cortical differentiation obtained predominantly from histological studies is limited in localized and small cortical regions. How cortical microstructure is differentiated across cortical regions in this critical period is unknown.
View Article and Find Full Text PDFIndividual variability in human brain networks underlies individual differences in cognition and behaviors. However, researchers have not conclusively determined when individual variability patterns of the brain networks emerge and how they develop in the early phase. Here, we employed resting-state functional MRI data and whole-brain functional connectivity analyses in 40 neonates aged around 31-42 postmenstrual weeks to characterize the spatial distribution and development modes of individual variability in the functional network architecture.
View Article and Find Full Text PDFBackground: We compared different surgical techniques for nerve regeneration in a rabbit sciatic nerve gap model using magnetic resonance diffusion tensor imaging (DTI), electrophysiology, limb function, and histology.
Methods: A total of 24 male New Zealand white rabbits were randomized into three groups: autograft ( = 8), hollow conduit ( = 8), and collagen-filled conduit ( = 8). A 10-mm segment of the rabbit proximal sciatic nerve was cut, and autograft or collagen conduit was used to bridge the gap.
During the 3rd trimester, dramatic structural changes take place in the human brain, underlying the neural circuit formation. The survival rate of premature infants has increased significantly in recent years. The large morphological differences of the preterm brain at 33 or 36 postmenstrual weeks (PMW) from the brain at 40PMW (full term) make it necessary to establish age-specific atlases for preterm brains.
View Article and Find Full Text PDFDuring the 3rd trimester, large-scale neural circuits are formed in the human brain, resulting in a highly efficient and segregated connectome at birth. Despite recent findings identifying important preterm human brain network properties such as rich-club organization, how the structural network develops differentially across brain regions and among different types of connections in this period is not yet known. Here, using high resolution diffusion MRI of 77 preterm-born and full-term neonates scanned at 31.
View Article and Find Full Text PDFUnlabelled: Diffusion tensor imaging (DTI) is a noninvasive magnetic resonance imaging (MRI) technique that measures the extent of restricted water diffusion and anisotropy in biological tissue. Although DTI has been widely applied in the brain, more recently researchers have used it to characterize nerve pathology in the setting of entrapment neuropathy, traumatic injury, and tumor. DTI artifacts are exacerbated when imaging off isocenter in the body.
View Article and Find Full Text PDFAnimal models of the rhesus macaque (Macaca mulatta), the most widely used nonhuman primate, have been irreplaceable in neurobiological studies. However, a population-averaged macaque brain diffusion tensor imaging (DTI) atlas, including comprehensive gray and white matter labeling as well as bony and facial landmarks guiding invasive experimental procedures, is not available. The macaque white matter tract pathways and microstructures have been rarely recorded.
View Article and Find Full Text PDFThe human brain develops rapidly during 32-45 postmenstrual weeks (PMW), a critical stage characterized by dramatic increases of metabolic demand. The increasing metabolic demand can be inferred through measurements of regional cerebral blood flow (CBF), which might be coupled to regional metabolism in preterm brains. Arterial spin labeled (ASL) perfusion MRI is one of the few viable approaches for imaging regional CBF of preterm brains, but must be optimized for the extremely slow blood velocity unique in preterm brains.
View Article and Find Full Text PDFFrom early childhood to adulthood, synaptogenesis and synaptic pruning continuously reshape the structural architecture and neural connection in developmental human brains. Disturbance of the precisely balanced strengthening of certain axons and pruning of others may cause mental disorders such as autism and schizophrenia. To characterize this balance, we proposed a novel measurement based on cortical parcellation and diffusion MRI (dMRI) tractography, a cortical connectivity maturation index (CCMI).
View Article and Find Full Text PDFHuman brain functional networks are topologically organized with nontrivial connectivity characteristics such as small-worldness and densely linked hubs to support highly segregated and integrated information processing. However, how they emerge and change at very early developmental phases remains poorly understood. Here, we used resting-state functional MRI and voxel-based graph theory analysis to systematically investigate the topological organization of whole-brain networks in 40 infants aged around 31 to 42 postmenstrual weeks.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2015
The structures of developing human brain white matter (WM) tracts can be effectively quantified by DTI-derived metrics, including fractional anisotropy (FA), mean, axial and radial diffusivity (MD, AD and RD). However, dynamics of WM microstructure during very early developmental period from mid-fetal to perinatal stage is unknown. It is difficult to accurately measure microstructural properties of these WM tracts due to severe contamination from cerebrospinal fluid (CSF).
View Article and Find Full Text PDFCortical thickness (CT) changes during normal brain development is associated with complicated cellular and molecular processes including synaptic pruning and apoptosis. In parallel, the microstructural enhancement of developmental white matter (WM) axons with their neuronal bodies in the cerebral cortex has been widely reported with measurements of metrics derived from diffusion tensor imaging (DTI), especially fractional anisotropy (FA). We hypothesized that the changes of CT and microstructural enhancement of corresponding axons are highly interacted during development.
View Article and Find Full Text PDFWe hypothesized that the distinct maturational processes take place across different cortical areas from middle fetal stage to normal time of birth and these maturational processes are altered in late third trimester. Fractional anisotropies (FA) from diffusion tensor imaging (DTI) infer the microstructures of the early developing cortical plate. High-resolution DTI of 11 fetal brain specimens at postmenstrual age of 20 weeks (or simplified as 20 weeks), 19 in vivo brains at 35 weeks, and 17 in vivo brains at normal time of birth at term (40 weeks) were acquired.
View Article and Find Full Text PDFDuring human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs).
View Article and Find Full Text PDFThe cerebral metabolic rate of oxygen (CMRO2) is the rate of oxygen consumption by the brain, and is thought to be a direct index of energy homeostasis and brain health. However, in vivo measurement of CMRO2 is challenging, in particular for the neonatal population, in whom conventional radiotracer methods are not applicable because of safety concerns. In this study, we propose a method to quantify global CMRO2 in neonates based on arteriovenous differences in oxygen content, and employ separate measurements of oxygenation and cerebral blood flow (CBF) parameters.
View Article and Find Full Text PDFDuring human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood.
View Article and Find Full Text PDFAs a prominent component of the human fetal brain, the structure of the cerebral wall is characterized by its laminar organization which includes the radial glial scaffold during fetal development. Diffusion tensor imaging (DTI) is useful to quantitatively delineate the microstructure of the developing brain and to clearly identify transient fetal layers in the cerebral wall. In our study, the spatio-temporal microstructural changes in the developing human fetal cerebral wall were quantitatively characterized with high-resolution DTI data of postmortem fetal brains from 13 to 21 gestational weeks.
View Article and Find Full Text PDFAccurately measuring the cortical mean diffusivity (MD) derived from diffusion tensor imaging (DTI) at the comprehensive lobe, gyral and voxel level of young, elderly healthy brains and those with Alzheimer's disease (AD) may provide insights on heterogeneous cortical microstructural changes caused by aging and AD. Due to partial volume effects (PVE), the measurement of cortical MD is overestimated with contamination of cerebrospinal fluid (CSF). The bias is especially severe for aging and AD brains because of significant cortical thinning of these brains.
View Article and Find Full Text PDFFractal analysis methods are used to quantify the complexity of the human cerebral cortex. Many recent studies have focused on high resolution three-dimensional reconstructions of either the outer (pial) surface of the brain or the junction between the gray and white matter, but ignore the structure between these surfaces. This study uses a new method to incorporate the entire cortical thickness.
View Article and Find Full Text PDFThe purpose of this project is to apply a modified fractal analysis technique to high-resolution T1 weighted magnetic resonance images in order to quantify the alterations in the shape of the cerebral cortex that occur in patients with Alzheimer's disease. Images were selected from the Alzheimer's Disease Neuroimaging Initiative database (Control N=15, Mild-Moderate AD N=15). The images were segmented using a semi-automated analysis program.
View Article and Find Full Text PDF