Birth Defects Res A Clin Mol Teratol
July 2015
Background: Congenital cytomegalovirus infection is the major nongenetic cause of sensorineural hearing loss at birth and beyond. Among other pathologies, there is a striking dysplasia/hyperplasia of organ of Corti hair and supporting cells.
Methods: Using an in vitro embryonic mouse model of cytomegalovirus-induced cochlear teratogenesis that mimics the known human pathology, and functional signaling network modeling, we tested the hypothesis that cytomegalovirus disrupts the highly ordered organ of Corti hair and supporting cells pattern by dysregulating Notch and Fgfr3, their cognate ligands and downstream effectors.
Mucoepidermoid carcinoma (MEC) is the most prevalent malignant tumor in major and minor salivary glands (SGs). We have recently identified human cytomegalovirus (hCMV) as a principle component in the multifactorial causation of SG-MEC. This finding is corroborated by the ability of the purified mouse CMV (mCMV) to induce malignant transformation of SG cells in a three-dimensional in vitro mouse model, using a similar oncogenic signaling pathway.
View Article and Find Full Text PDFMucoepidermoid carcinoma (MEC) is the most common malignant tumor originating in major and minor salivary glands (SGs). Although the precise multifactorial etiology of human SG-MEC is largely unknown, we have recently shown that cytomegalovirus (CMV) is an important component of MEC tumorigenesis. Despite the well-documented overexpression of the EGFR → ERK signaling pathway in SG-MEC, there has been limited to no clinical success with inhibition of this pathway.
View Article and Find Full Text PDFBackground: Recently we identified a relationship between human cytomegalovirus (hCMV) and human salivary gland (SG) mucoepidermoid carcinoma (MEC) in over 90% of cases; tumorigenesis in these cases uniformly correlated with active hCMV protein expression and an upregulation of the EGFR → ERK pathway. Our previously characterized, novel mouse organ culture model of mouse CMV (mCMV)-induced tumorigenesis displays a number of histologic and molecular characteristics similar to human MEC.
Methods: Newborn mouse submandibular glands (SMGs) were incubated with 1 × 105 PFU/ml of lacZ-tagged mCMV RM427+ on day 0 for 24 hours and then cultured in virus-free media for a total of 6 or 12 days with or without EGFR/ERK inhibitors and/or aciclovir.
Birth Defects Res A Clin Mol Teratol
February 2013
Congenital human cytomegalovirus (CMV) infection is the leading nongenetic etiology of sensorineural hearing loss (SNHL) at birth and prelingual SNHL not expressed at birth. The paucity of temporal bone autopsy specimens from infants with congenital CMV infection has hindered the critical correlation of histopathology with pathogenesis. Here, we present an in vitro embryonic mouse model of CMV-infected cochleas that mimics the human sites of viral infection and associated pathology.
View Article and Find Full Text PDFHuman cytomegalovirus (hCMV) infection is common. Although still controversial, there is growing evidence that active hCMV infection is associated with a variety of malignancies, including brain, breast, lung, colon, and prostate. Given that hCMV is frequently resident in salivary gland (SG) ductal epithelium, we hypothesized that hCMV would be important to the pathogenesis of SG mucoepidermoid carcinoma (MEC).
View Article and Find Full Text PDFTwisted gastrulation (TWSG1) is a conserved, secreted glycoprotein that modulates signaling of bone morphogenetic proteins (BMPs) in the extracellular space. Deletion of exon 4 of mouse Twsg1 (mTwsg1) is associated with significant craniofacial defects. However, little is understood about the biochemical properties of the corresponding region of the protein.
View Article and Find Full Text PDFAs with other herpesviruses, human cytomegalovirus (hCMV) has the ability to establish lifelong persistence and latent infection following primary exposure, salivary glands (SMGs) being the primary site of both. In the immunocompromised patient, hCMV is a common cause of opportunistic infections, and subsequent morbidity and mortality. Elucidating the molecular pathogenesis of CMV-induced disease is critical to the development of more effective and safer drug therapies.
View Article and Find Full Text PDFDysregulation of the transcription factor CRTC1 by a t(11;19) chromosomal rearrangement mediates the formation of mucoepidermoid salivary gland carcinoma (MEC). Although the CRTC1 promoter is consistently active in fusion-positive MEC and low levels of CRTC1 transcripts have been reported in normal adult salivary glands, the distribution of CRTC1 protein in the normal salivary gland is not known. The aim of this study was to determine if CRTC1, like many known oncogenes, is expressed during early submandibular salivary gland (SMG) development and re-expressed in an experimental tumor model.
View Article and Find Full Text PDFOf the approximately 8,400 children born each year in the US with cytomegalovirus (CMV)-induced birth defects, more than one third exhibit hypoplasia and hypocalcification of tooth enamel. Our prior studies indicated that CMV severely delayed, but did not completely interrupt, early mouse mandibular first molar morphogenesis in vitro. The aim of the present study was to examine the effects of CMV infection on progressive tooth differentiation and amelogenesis.
View Article and Find Full Text PDFBackground: Ectodysplasin-A appears to be a critical component of branching morphogenesis. Mutations in mouse Eda or human EDA are associated with absent or hypoplastic sweat glands, sebaceous glands, lacrimal glands, salivary glands (SMGs), mammary glands and/or nipples, and mucous glands of the bronchial, esophageal and colonic mucosa. In this study, we utilized EdaTa (Tabby) mutant mice to investigate how a marked reduction in functional Eda propagates with time through a defined genetic subcircuit and to test the proposition that canonical NFkappaB signaling is sufficient to account for the differential expression of developmentally regulated genes in the context of Eda polymorphism.
View Article and Find Full Text PDFBackground: Human clinical studies and mouse models clearly demonstrate that cytomegalovirus (CMV) disrupts normal organ and tissue development. Although CMV is one of the most common causes of major birth defects in humans, little is presently known about the mechanism(s) underlying CMV-induced congenital malformations. Our prior studies have demonstrated that CMV infection of first branchial arch derivatives (salivary glands and teeth) induced severely abnormal phenotypes and that CMV has a particular tropism for neural crest-derived mesenchyme (NCM).
View Article and Find Full Text PDFObjective: Cytomegalovirus (CMV) is one of the most common causes of major birth defects in humans. Of the approximately 8400 children born each year in the U.S.
View Article and Find Full Text PDFBackground: Human studies suggest, and mouse models clearly demonstrate, that cytomegalovirus (CMV) is dysmorphic to early organ and tissue development. CMV has a particular tropism for embryonic salivary gland and other head mesenchyme. CMV has evolved to co-opt cell signaling networks so to optimize replication and survival, to the detriment of infected tissues.
View Article and Find Full Text PDFObjective: Mouse Twisted gastrulation gene (Twsg1) expression is found throughout embryonic development, including substantial levels in the first branchial arch that gives rise to the submandibular salivary gland (SMG). We addressed the proposition that normal Twsg1 expression is critical to normal SMG ontogenesis.
Design: Utilizing C57BL/6 embryos that were Twsg1-/- homozygotes, as well as wild type and heterozygote littermates, we investigated SMG development from gestational day 13 to newborn.
Cells Tissues Organs
September 2005
The hedgehog (Hh) signaling pathway has been shown to be essential for craniofacial development. Although mandibular arch derivatives are largely absent in Shh null mice, little is known about the role of Hh signaling during Meckel's cartilage development per se. Mandible development is dependent on the morphogenesis of Meckel's cartilage, which then serves as a template for subsequent skeletal differentiation.
View Article and Find Full Text PDFBackground: Analyses of Fgf10 and Fgfr2b mutant mice, as well as human studies, suggest that FGF10/FGFR2b signaling may play an essential, nonredundant role during embryonic SMG development. To address this question, we have analyzed the SMG phenotype in Fgf10 and Fgfr2b heterozygous and null mutant mice. In addition, although previous studies suggest that the FGF10/FGFR2b and FGF8/FGFR2c signaling pathways are functionally interrelated, little is known about the functional relationship between these two pathways during SMG development.
View Article and Find Full Text PDFFGF8 has been shown to play important morphoregulatory roles during embryonic development. The observation that craniofacial, cardiovascular, pharyngeal, and neural phenotypes vary with Fgf8 gene dosage suggests that FGF8 signaling induces differences in downstream responses in a dose-dependent manner. In this study, we investigated if FGF8 plays a dose-dependent regulatory role during embryonic submandibular salivary gland (SMG) morphogenesis.
View Article and Find Full Text PDFAnat Rec A Discov Mol Cell Evol Biol
April 2003
Hypohidrotic (anhidrotic) ectodermal dysplasia (HED), the most common of the approximately 150 described ectodermal dysplasias, is a disorder characterized by abnormal hair, teeth, sweat glands, and salivary glands. Mutations in the EDA (ectodysplasin-A) and EDAR (ectodysplasin-A receptor) genes are responsible for X-linked and autosomal HED, respectively. Abnormal phenotypes similar to HED are seen in Tabby (Eda(Ta)) and downless (Edar(dl)) mutant mice.
View Article and Find Full Text PDFEmbryonic submandibular salivary gland (SMG) initiation and branching morphogenesis are dependent on cell-cell communications between and within epithelium and mesenchyme. Such communications are typically mediated in other organs (teeth, lung, lacrimal glands) by growth factors in such a way as to translate autocrine, juxtacrine and paracrine signals into specific gene responses regulating cell division and histodifferentiation. Using Wnt1-Cre/R26R transgenic mice, we demonstrate that embryonic SMG mesenchyme is derived exclusively from cranial neural crest.
View Article and Find Full Text PDF