Even though deep learning shows impressive results in several applications, its use on problems with High Dimensions and Low Sample Size, such as diagnosing rare diseases, leads to overfitting. One solution often proposed is feature selection. In deep learning, along with feature selection, network sparsification is also used to improve the results when dealing with high dimensions low sample size data.
View Article and Find Full Text PDFComput Struct Biotechnol J
September 2021
Because of their considerable number and diversity, membrane proteins and their macromolecular complexes represent the functional units of cells. Their quaternary structure may be stabilized by interactions between the α-helices of different proteins in the hydrophobic region of the cell membrane. Membrane proteins equally represent potential pharmacological targets par excellence for various diseases.
View Article and Find Full Text PDFBackground: The use of predictive gene signatures to assist clinical decision is becoming more and more important. Deep learning has a huge potential in the prediction of phenotype from gene expression profiles. However, neural networks are viewed as black boxes, where accurate predictions are provided without any explanation.
View Article and Find Full Text PDF