Potatoes are a promising system for industrial production of the biopolymer cyanophycin as a second compound in addition to starch. To assess the efficiency in the field, we analysed the stability of the system, specifically its sensitivity to environmental factors. Field and greenhouse trials with transgenic potatoes (two independent events) were carried out for three years.
View Article and Find Full Text PDFCyanophycin (CP) is a proteinogenic polymer that can be substituted for petroleum in the production of plastic compounds and can also serve as a source of valuable dietary supplements. However, because there is no economically feasible system for large-scale industrial production, its application is limited. In order to develop a low-input system, CP-synthesis was established in the two commercial Nicotiana tabacum (N.
View Article and Find Full Text PDFA chimeric cyanophycin synthetase gene composed of the cphATe coding region from the cyanobacterium Thermosynechococcus elongatus BP-1, the constitutive 35S promoter and the plastid targeting sequence of the integral photosystem II protein PsbY was transferred to the tobacco variety Petit Havanna SRI and the commercial potato starch production variety Albatros. The resulting constitutive expression of cyanophycin synthetase leads to polymer contents in potato leaf chloroplasts of up to 35 mg/g dry weight and in tuber amyloplasts of up to 9 mg/g dry weight. Both transgenic tobacco and potato were used for the development of isolation methods applicable for large-scale extraction of the polymer.
View Article and Find Full Text PDFPlant Biotechnol J
December 2009
The production of biodegradable polymers that can be used to substitute petrochemical compounds in commercial products in transgenic plants is an important challenge for plant biotechnology. Nevertheless, it is often accompanied by reduced plant fitness. To decrease the phenotypic abnormalities of the sprout and to increase polymer production, we restricted cyanophycin accumulation to the potato tubers by using the cyanophycin synthetase gene (cphA(Te)) from Thermosynechococcus elongatus BP-1, which is under the control of the tuber-specific class 1 promoter (B33).
View Article and Find Full Text PDFThe production of biodegradable polymers in transgenic plants is an important challenge in plant biotechnology; nevertheless, it is often accompanied by reduced plant fitness. In order to decrease the phenotypic abnormalities caused by cytosolic production of the biodegradable polymer cyanophycin, and to increase polymer accumulation, four translocation pathway signal sequences for import into chloroplasts were individually fused to the coding region of the cyanophycin synthetase gene (cphA(Te)) of Thermosynechococcus elongatus BP-1, resulting in the constructs pRieske-cphA(Te), pCP24-cphA(Te), pFNR-cphA(Te) and pPsbY-cphA(Te). These constructs were expressed in Nicotiana tabacum var.
View Article and Find Full Text PDF