Alzheimer's disease (AD) is the most common neurodegenerative disorder and is being intensively investigated using a broad variety of animal models. Many of these models express mutant versions of human amyloid-β protein precursor (AβPP) that are associated with amyloid-β protein (Aβ)-induced early onset familial AD. Most of these models, however, do not develop bold neurodegenerative pathology and the respective phenotypes.
View Article and Find Full Text PDFCurrently, there are no causative or disease modifying treatments available for Alzheimer's disease (AD). Previously, it has been shown that D3, a small, fully d-enantiomeric peptide is able to eliminate low molecular weight Aβ oligomers in vitro, enhance cognition and reduce plaque load in AD transgenic mice. To further characterise the therapeutic potential of D3 towards N-terminally truncated and pyroglutamated Aβ (pEAβ(3-42)) we tested D3 and its head-to-tail tandem derivative D3D3 both in vitro and in vivo in the new mouse model TBA2.
View Article and Find Full Text PDFStrong evidence exists for a central role of amyloid β-protein (Aβ) oligomers in the pathogenesis of Alzheimer's disease. We have developed a fast, reliable and robust in vitro assay, termed QIAD, to quantify the effect of any compound on the Aβ aggregate size distribution. Applying QIAD, we studied the effect of homotaurine, scyllo-inositol, EGCG, the benzofuran derivative KMS88009, ZAβ3W, the D-enantiomeric peptide D3 and its tandem version D3D3 on Aβ aggregation.
View Article and Find Full Text PDFBackground: ATP-binding cassette (ABC) transporters are essential regulators of organismic homeostasis, and are particularly important in protecting the body from potentially harmful exogenous substances. Recently, an increasing number of in vitro observations have indicated a functional role of ABC transporters in the differentiation and maintenance of stem cells. Therefore, we sought to determine brain-related phenotypic changes in animals lacking the expression of distinct ABC transporters (ABCB1, ABCG2 or ABCC1).
View Article and Find Full Text PDFSeveral lines of evidence link mutations and deletions in mitochondrial DNA (mtDNA) and its maternal inheritance to neurodegenerative diseases in the elderly. Age-related mutations of mtDNA modulate the tricarboxylic cycle enzyme activity, mitochondrial oxidative phosphorylation capacity and oxidative stress response. To investigate the functional relevance of specific mtDNA polymorphisms of inbred mouse strains in the proteostasis regulation of the brain, we established novel mitochondrial congenic mouse lines of Alzheimer's disease (AD).
View Article and Find Full Text PDF