Publications by authors named "Tina C Wan"

Pulmonary arteriovenous malformations (PAVMs) universally develop in patients with single ventricle congenital heart disease. Single ventricle PAVMs have been recognized for over 50 years but remain poorly understood. To improve our understanding, we developed a surgical rat model of Glenn circulation and characterized PAVM physiology over multiple time points.

View Article and Find Full Text PDF

2-Arylethynyl (N)-methanocarba adenosine 5'-methylamides are selective A adenosine receptor (AR) agonists containing a preestablished receptor-preferred pseudoribose conformation. Here, we compare analogues having bulky 2-substitution, either containing or lacking an ethynyl spacer between adenine and a cyclic group. 2-Aryl compounds -, , , , , , , , , and , lacking a spacer, had human (h) AAR values of 2-30 nM, and others displayed lower affinity.

View Article and Find Full Text PDF
Article Synopsis
  • AAR positive allosteric modulators (PAMs) enhance the effects of AAR agonists by binding at a lipid-exposed site, without increasing their potency due to the presence of antagonism.
  • Researchers modified the chemical structure of PAMs by introducing various substitutions and extensions to improve their allosteric binding to both human and mouse AARs.
  • The mechanism behind this improvement involves a flexible chain that interacts with the lipid environment, indicating a novel way of stabilizing the PAM binding through electrostatic interactions with phospholipid head groups.
View Article and Find Full Text PDF

Myocardial infarction (MI) results in the loss of billions of cardiomyocytes (CMs), resulting in cardiac dysfunction. To re-muscularize injured myocardium, new CMs must be generated via renewed proliferation of surviving CMs. Approaches to induce proliferation of CMs after injury have been insufficient.

View Article and Find Full Text PDF

This study describes the localization and computational prediction of a binding site for the A adenosine receptor (AAR) positive allosteric modulator 2-cyclohexyl-1-imidazo[4,5-c]quinolin-4-(3,4-dichlorophenyl)amine (LUF6000). The work reveals an extrahelical lipid-facing binding pocket disparate from the orthosteric binding site that encompasses transmembrane domain (TMD) 1, TMD7, and Helix (H) 8, which was predicted by molecular modeling and validated by mutagenesis. According to the model, the nearly planar 1-imidazo[4,5-c]quinolinamine ring system lies parallel to the transmembrane segments, inserted into an aromatic cage formed by π-π stacking interactions with the side chains of Y284 in TMD7 and Y293 in H8 and by π-NH bonding between Y284 and the exocyclic amine.

View Article and Find Full Text PDF

()-Methanocarba adenosine derivatives (A adenosine receptor (AR) agonists containing bicyclo[3.1.0]hexane replacing furanose) were chain-extended at and C2 positions with terminal alkenes for ring closure.

View Article and Find Full Text PDF

Pharmacologic strategies that target factors with both pro-apoptotic and anti-proliferative functions in cardiomyocytes (CMs) may be useful for the treatment of ischemic heart disease. One such multifunctional candidate for drug targeting is the acetyltransferase Tip60, which is known to acetylate both histone and non-histone protein targets that have been shown in cancer cells to promote apoptosis and to initiate the DNA damage response, thereby limiting cellular expansion. Using a murine model, we recently published findings demonstrating that CM-specific disruption of the Kat5 gene encoding Tip60 markedly protects against the damaging effects of myocardial infarction (MI).

View Article and Find Full Text PDF

The A adenosine receptor (AAR) is a promising therapeutic target for inflammatory diseases, cancer, and chronic neuropathic pain, with agonists already in advanced clinical trials. Here we report an in-depth comparison of the pharmacological properties and structure-activity relationships of existing and expanded compound libraries of 2-substituted 1-imidazo[4,5-]quinolin-4-amine and 4-amino-substituted quinoline derivatives that function as AAR positive allosteric modulators (PAMs). We also show that our lead compound from each series enhances adenosine-induced AAR signaling preferentially toward activation of Gα and Gα isoproteins, which are coexpressed with the AAR in immune cells and spinal cord neurons.

View Article and Find Full Text PDF

Injury from myocardial infarction (MI) and consequent post-MI remodeling is accompanied by massive loss of cardiomyocytes (CM), a cell type critical for contractile function that is for all practical purposes non-regenerable due to its profound state of proliferative senescence. Identification of factors that limit CM survival and/or constrain CM renewal provides potential therapeutic targets. Tip60, a pan-acetyltransferase encoded by the Kat5 gene, has been reported to activate apoptosis as well as multiple anti-proliferative pathways in non-cardiac cells; however, its role in CMs, wherein it is abundantly expressed, remains unknown.

View Article and Find Full Text PDF

Tip60, a pan-acetyltransferase encoded by the Kat5 gene, is enriched in the myocardium; however, its function in the heart is unknown. In cancer cells, Tip60 acetylates Atm (Ataxia-telangiectasia mutated), enabling its auto-phosphorylation (pAtm), which activates the DNA damage response (DDR). It was recently reported that activation of pAtm at the time of birth induces the DDR in cardiomyocytes (CMs), resulting in proliferative senescence.

View Article and Find Full Text PDF

Regeneration of muscle in the damaged myocardium is a major objective of cardiovascular research, for which purpose many investigators utilize mice containing transgenes encoding Cre recombinase to recombine loxP-flanked target genes. An unfortunate side effect of the Cre-loxP model is the propensity of Cre recombinase to inflict off-target DNA damage, which has been documented in various eukaryotic cell types including cardiomyocytes (CMs). In the heart, reported effects of Cre recombinase include contractile dysfunction, fibrosis, cellular infiltration and induction of the DNA damage response (DDR).

View Article and Find Full Text PDF

The Hippo-Yap pathway regulates multiple cellular processes in response to mechanical and other stimuli. In , the polarity protein Lethal (2) giant larvae [L(2)gl], negatively regulates Hippo-mediated transcriptional output. However, in vertebrates, little is known about its homolog Llgl1.

View Article and Find Full Text PDF

A adenosine receptor (AAR) agonists are effective at limiting injury caused by ischemia/reperfusion injury of the heart in experimental animal models. However, understanding of their mechanism of action, which is likely multifactorial, remains incomplete. In prior studies, it has been demonstrated that AAR-mediated ischemic protection is blocked by glibenclamide and is absent in Kir6.

View Article and Find Full Text PDF

There is great interest in identifying signaling mechanisms by which cardiomyocytes (CMs) can enter the cell cycle and promote endogenous cardiac repair. We have previously demonstrated that IL-13 stimulated cell cycle activity of neonatal CMs in vitro. However, the signaling events that occur downstream of IL-13 in CMs and the role of IL-13 in CM proliferation and regeneration in vivo have not been explored.

View Article and Find Full Text PDF

Activity of the A adenosine receptor (AR) allosteric modulators LUF6000 (2-cyclohexyl-N-(3,4-dichlorophenyl)-1H-imidazo [4,5-c]quinolin-4-amine) and LUF6096 (N-{2-[(3,4-dichlorophenyl)amino]quinolin-4-yl}cyclohexanecarbox-amide) was compared at four AAR species homologs used in preclinical drug development. In guanosine 5'-[γ-[S]thio]triphosphate ([S]GTPγS) binding assays with cell membranes isolated from human embryonic kidney cells stably expressing recombinant AARs, both modulators substantially enhanced agonist efficacy at human, dog, and rabbit AARs but provided only weak activity at mouse AARs. For human, dog, and rabbit, both modulators increased the maximal efficacy of the AAR agonist 2-chloro-N -(3-iodobenzyl)adenosine-5'-N-methylcarboxamide as well as adenosine > 2-fold, while slightly reducing potency in human and dog.

View Article and Find Full Text PDF

Small mammals have the ability to enter torpor, a hypothermic, hypometabolic state, allowing impressive energy conservation. Administration of adenosine or adenosine 5'-monophosphate (AMP) can trigger a hypothermic, torpor-like state. We investigated the mechanisms for hypothermia using telemetric monitoring of body temperature in wild type and receptor knock out (Adora1, Adora3) mice.

View Article and Find Full Text PDF

Lung cancer is the leading cause of cancer death in the United States. Metastasis to lymph nodes and distal organs, especially brain, leads to severe complications and death. Preventing lung cancer development and metastases is an important strategy to reduce lung cancer mortality.

View Article and Find Full Text PDF

The A(2B) adenosine receptor (AR) has emerged as a unique member of the AR family with contrasting roles during acute and chronic disease states. We utilized zinc-finger nuclease technology to create A(2B)AR gene (Adora2b)-disrupted rats on the Dahl salt-sensitive (SS) genetic background. This strategy yielded a rat strain (SS-Adora2b mutant rats) with a 162-base pair in-frame deletion of Adora2b that included the start codon.

View Article and Find Full Text PDF

Lipoxygenases regulate vascular function by metabolizing arachidonic acid (AA) to dilator eicosanoids. Previously, we showed that endothelium-targeted adenoviral vector-mediated gene transfer of the human 15-lipoxygenase-1 (h15-LO-1) enhances arterial relaxation through the production of vasodilatory hydroxyepoxyeicosatrienoic acid (HEETA) and trihydroxyeicosatrienoic acid (THETA) metabolites. To further define this function, a transgenic (Tg) mouse line that overexpresses h15-LO-1 was studied.

View Article and Find Full Text PDF

G protein coupled receptors play crucial roles in mediating cellular responses to external stimuli, and increasing evidence suggests that they function as multiple units comprising homo/heterodimers and hetero-oligomers. Adenosine and β-adrenergic receptors are co-expressed in numerous tissues and mediate important cellular responses to the autocoid adenosine and sympathetic stimulation, respectively. The present study was undertaken to examine whether adenosine A1ARs heterodimerize with β1- and/or β2-adrenergic receptors (β1R and β2R), and whether such interactions lead to functional consequences.

View Article and Find Full Text PDF

(N)-Methanocarba adenosine 5'-methyluronamides containing known A(3) AR (adenosine receptor)-enhancing modifications, i.e., 2-(arylethynyl)adenine and N(6)-methyl or N(6)-(3-substituted-benzyl), were nanomolar full agonists of human (h) A(3)AR and highly selective (K(i) ∼0.

View Article and Find Full Text PDF

Background: When stimulated by small molecular agonists, the A3 adenosine receptor (AR) mediates cardioprotective effects without inducing detrimental hemodynamic side effects. We have examined pharmacologically the protective properties of a multivalent dendrimeric conjugate of a nucleoside as a selective multivalent agonist for the mouse A3AR.

Results: A PAMAM dendrimer fully substituted by click chemistry on its peripheral groups with 64 moieties of a nucleoside agonist was shown to be potent and selective in binding to the mouse A3AR and effective in cardioprotection in an isolated mouse heart model of ischemia/reperfusion (I/R) injury.

View Article and Find Full Text PDF

The formation of adenosine dampens inflammation by inhibiting most cells of the immune system. Among its actions on neutrophils, adenosine suppresses superoxide generation and regulates chemotactic activity. To date, most evidence implicates the G(s) protein-coupled A(2A) adenosine receptor (AR) as the primary AR subtype responsible for mediating the actions of adenosine on neutrophils by stimulating cAMP production.

View Article and Find Full Text PDF

Ischemic preconditioning (IPC) is a protective phenomenon in which brief ischemia renders the myocardium resistant to subsequent ischemic insults. Here, we used A(2B)AR gene knock-out (A(2B)KO)/β-galactosidase reporter gene knock-in mice and the A(2B)AR antagonist ATL-801 to investigate the potential involvement of the A(2B)AR in IPC, focusing on the acute phase of protection. Cardioprotection provided by acute IPC elicited by two 3-min occlusion/3-min reperfusion cycles was readily apparent in an isolated, Langendorff-perfused mouse heart model in studies using hearts from A(2B)KO mice.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionrgmcr0eoa64egf7588agd6gep41ricej): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once