Mean telomere length (TL) in blood cells is heritable and has been reported to be associated with risks of several diseases, including cancer. We conducted a meta-analysis of three GWAS for TL (total n=2240) and selected 1629 variants for replication via the "iCOGS" custom genotyping array. All ∼200 000 iCOGS variants were analysed with TL, and those displaying associations in healthy controls (n = 15 065) were further tested in breast cancer cases (n = 11 024).
View Article and Find Full Text PDFBackground: Mammographic breast density and endogenous sex-hormone levels are both strong risk factors for breast cancer. This study investigated whether there is evidence for a shared genetic basis between these risk factors.
Methods: Using data on 1,286 women from 617 families, we estimated the heritabilities of serum estradiol, testosterone, and sex-hormone binding globulin (SHBG) levels and of three measures of breast density (dense area, nondense area, and percentage density).
Genome-wide association studies (GWAS) have successfully identified common genetic variants that contribute to breast cancer risk. Discovering additional variants has become difficult, as power to detect variants of weaker effect with present sample sizes is limited. An alternative approach is to look for variants associated with quantitative traits that in turn affect disease risk.
View Article and Find Full Text PDFPercent mammographic density adjusted for age and body mass index (BMI) is one of the strongest risk factors for breast cancer and has a heritable component that remains largely unidentified. We performed a three-stage genome-wide association study (GWAS) of percent mammographic density to identify novel genetic loci associated with this trait. In stage 1, we combined three GWASs of percent density comprised of 1241 women from studies at the Mayo Clinic and identified the top 48 loci (99 single nucleotide polymorphisms).
View Article and Find Full Text PDFBackground: Mammographic density adjusted for age and body mass index (BMI) is a heritable marker of breast cancer susceptibility. Little is known about the biologic mechanisms underlying the association between mammographic density and breast cancer risk. We examined whether common low-penetrance breast cancer susceptibility variants contribute to interindividual differences in mammographic density measures.
View Article and Find Full Text PDFHigh-percent mammographic density adjusted for age and body mass index is one of the strongest risk factors for breast cancer. We conducted a meta analysis of five genome-wide association studies of percent mammographic density and report an association with rs10995190 in ZNF365 (combined P = 9.6 × 10(-10)).
View Article and Find Full Text PDFCancer Epidemiol Biomarkers Prev
July 2010
Background: A recent study reported genetic variants in the TERT-CLPTM1L locus that were associated with mean telomere length, and with risk of multiple cancers.
Methods: We evaluated the association between single nucleotide polymorphism (SNP) rs401681 (C > T) and mean telomere length, using quantitative real-time PCR, in blood-extracted DNA collected from 11,314 cancer-free participants from the Sisters in Breast Screening study, the Melanoma and Pigmented Lesions Evaluative Study melanoma family study, and the SEARCH Breast, Colorectal, Melanoma studies. We also examined the relationship between rs401618 genotype and susceptibility to breast cancer (6,800 cases and 6,608 controls), colorectal cancer (2,259 cases and 2,181 controls), and melanoma (787 cases and 999 controls).
Cancer Epidemiol Biomarkers Prev
April 2009
Background: Mammographic breast density (MBD) has a strong genetic component. Investigating the genetic models for mammographic density may provide further insights into the genetic factors affecting breast cancer risk.
Purpose: To evaluate the familial aggregation of MBD and investigate the genetic models of susceptibility.