We report a novel source of twin beams based on modulational instability in high-pressure argon-filled hollow-core kagome-style photonic-crystal fiber. The source is Raman-free and manifests strong photon-number correlations for femtosecond pulses of squeezed vacuum with a record brightness of ∼2500 photons per mode. The ultra-broadband (∼50 THz) twin beams are frequency tunable and contain one spatial and less than 5 frequency modes.
View Article and Find Full Text PDFWe experimentally demonstrate polarization entanglement for squeezed vacuum pulses containing more than 10(5) photons. We also study photon-number entanglement by calculating the Schmidt number and measuring its operational counterpart. Theoretically, our pulses are the more entangled the brighter they are.
View Article and Find Full Text PDFThe measurement of the two-mode squeezed vacuum generated in an optical parametric amplifier (OPA) was performed with photon number resolving multipixel photon counters (MPPCs). Implementation of the MPPCs allows for the observation of noise reduction in a broad dynamic range of the OPA gain, which is inaccessible with standard single photon avalanche photodetectors.
View Article and Find Full Text PDFThe preparation of completely nonpolarized light is seemingly easy; an everyday example is sunlight. The task is much more difficult if light has to be in a pure quantum state, as required by most quantum-technology applications. The pure quantum states of light obtained so far are either polarized or, in rare cases, manifest hidden polarization; even if their intensities are invariant to polarization transformations, higher-order moments are not.
View Article and Find Full Text PDF