We perform photoassociation spectroscopy in an ultracold Na-Li mixture to study the cΣ excited triplet molecular potential. We observe 50 vibrational states and their substructure to an accuracy of 20 MHz, and provide line strength data from photoassociation loss measurements. An analysis of the vibrational line positions using near-dissociation expansions and a full potential fit is presented.
View Article and Find Full Text PDFWe employ two-photon spectroscopy to study the vibrational states of the triplet ground state potential (aΣ) of the NaLi molecule. Pairs of Na and Li atoms in an ultracold mixture are photoassociated into an excited triplet molecular state, which in turn is coupled to vibrational states of the triplet ground potential. Vibrational state binding energies, line strengths, and potential fitting parameters for the triplet ground aΣ potential are reported.
View Article and Find Full Text PDFWe create fermionic dipolar ^{23}Na^{6}Li molecules in their triplet ground state from an ultracold mixture of ^{23}Na and ^{6}Li. Using magnetoassociation across a narrow Feshbach resonance followed by a two-photon stimulated Raman adiabatic passage to the triplet ground state, we produce 3×10^{4} ground state molecules in a spin-polarized state. We observe a lifetime of 4.
View Article and Find Full Text PDFCollisions of 6Li2 molecules with free 6Li atoms reveal a striking deviation from universal predictions based on long-range van der Waals interactions. Li2 closed-channel molecules are formed in the highest vibrational state near a narrow Feshbach resonance and decay via two-body collisions with Li2, Li, and Na. For Li2 + Li2 and Li2 + Na, the decay rates agree with the universal predictions of the quantum Langevin model.
View Article and Find Full Text PDF