Publications by authors named "Timur A Isaev"

Potential advantages of chiral molecules for a sensitive search for parity violating cosmic fields are highlighted. Such fields are invoked in different models for cold dark matter or in the Lorentz-invariance violating standard model extensions and thus are signatures of physics beyond the standard model. The sensitivity of a 20-year-old experiment with the molecule CHBrClF to pseudovector cosmic fields as characterized by the parameter |b_{0}^{e}| is estimated to be O(10^{-12}  GeV) employing ab initio calculations.

View Article and Find Full Text PDF

Atoms can be cooled and trapped efficiently with the help of lasers. So-called Doppler cooling takes advantage of momentum transfer upon absorption and emission of photons and of Doppler shifts to facilitate effectively closed optical absorption-emission loops, by which atoms are slowed down and cooled. Due to the wealth of internal degrees of freedom accessible in molecules, it was assumed for a long time that similarly closed optical loops cannot be realised for molecules.

View Article and Find Full Text PDF

A rational approach to identify polyatomic molecules that appear to be promising candidates for direct Doppler cooling with lasers is outlined. First-principles calculations for equilibrium structures and Franck-Condon factors of selected representatives with different point-group symmetries (including the chiral nonsymmetric C1) have been performed and a high potential for laser cooling of these molecules is indicated.

View Article and Find Full Text PDF