Potential advantages of chiral molecules for a sensitive search for parity violating cosmic fields are highlighted. Such fields are invoked in different models for cold dark matter or in the Lorentz-invariance violating standard model extensions and thus are signatures of physics beyond the standard model. The sensitivity of a 20-year-old experiment with the molecule CHBrClF to pseudovector cosmic fields as characterized by the parameter |b_{0}^{e}| is estimated to be O(10^{-12} GeV) employing ab initio calculations.
View Article and Find Full Text PDFAtoms can be cooled and trapped efficiently with the help of lasers. So-called Doppler cooling takes advantage of momentum transfer upon absorption and emission of photons and of Doppler shifts to facilitate effectively closed optical absorption-emission loops, by which atoms are slowed down and cooled. Due to the wealth of internal degrees of freedom accessible in molecules, it was assumed for a long time that similarly closed optical loops cannot be realised for molecules.
View Article and Find Full Text PDFA rational approach to identify polyatomic molecules that appear to be promising candidates for direct Doppler cooling with lasers is outlined. First-principles calculations for equilibrium structures and Franck-Condon factors of selected representatives with different point-group symmetries (including the chiral nonsymmetric C1) have been performed and a high potential for laser cooling of these molecules is indicated.
View Article and Find Full Text PDF