The COPI coatomer subunit α-COP has been shown to co-precipitate mRNA in multiple settings, but it was unclear whether the interaction with mRNA was direct or mediated by interaction with an adapter protein. The COPI complex often interacts with proteins via C-terminal dilysine domains. A search for candidate RNA binding proteins with C-terminal dilysine motifs yielded Nucleolin, which terminates in a KKxKxx sequence.
View Article and Find Full Text PDFThe human papillomavirus (HPV) is a DNA tumor virus that infects cutaneous and mucosal epithelia where high-risk (HR) HPV infections lead to cervical, oropharyngeal, and anogenital cancers. Worldwide, nearly 5% of all cancers are caused by HR HPV. The viral E2 protein is essential for episomal replication throughout the viral lifecycle.
View Article and Find Full Text PDFHuman papillomavirus (HPV) L1 and L2 capsid proteins self-assemble into virions capable of efficiently packaging either its 8 kilobase genome or non-viral DNA. The ability of HPV capsids to package non-viral DNA makes these a useful tool for delivering plasmids to study proteins of interest in a variety of cell types. We describe optimization of current methods and present new protocols for using HPV capsids to deliver non-viral DNA thereby providing an alternative to DNA transfection.
View Article and Find Full Text PDFSeveral serine and threonine residues of the papillomavirus early E2 protein have been found to be phosphorylated. In contrast, only one E2 tyrosine phosphorylation site in BPV-1 (tyrosine 102) and one in HPV-16/31 (tyrosine 138) site have been characterized. Between BPV-1 and HPV-31 E2, 8 of the 11 tyrosines are conserved in the N-terminal domain, suggesting that phosphorylation of tyrosines has an essential role in E2 biology.
View Article and Find Full Text PDFThe papillomavirus (PV) E2 protein activates transcription and replication by recruiting cellular proteins and the E1 DNA helicase to their binding sites in the viral genome. We recently demonstrated that phosphorylation of tyrosine 102 in the bovine papillomavirus (BPV-1) E2 protein restricts these activities and that fibroblast growth factor receptor-3 (FGFR3) tyrosine kinase binds PV E2. Expression of FGFR3 decreased viral replication with both wild-type and the phenylalanine substitution at position 102, inferring that another kinase targets Y102.
View Article and Find Full Text PDFThe papillomavirus (PV) E2 protein is a DNA binding, protein interaction platform that recruits viral and host factors necessary for transcription and replication. We recently discovered phosphorylation of a tyrosine (Y102) in bovine PV (BPV) E2. To identify the responsible factor, we tested several candidate tyrosine kinases that are highly expressed in keratinocytes for binding to BPV-1 E2.
View Article and Find Full Text PDFUnlabelled: Papillomaviruses are small, double-stranded DNA viruses that encode the E2 protein, which controls transcription, replication, and genome maintenance in infected cells. Posttranslational modifications (PTMs) affecting E2 function and stability have been demonstrated for multiple types of papillomaviruses. Here we describe the first phosphorylation event involving a conserved tyrosine (Y) in the bovine papillomavirus 1 (BPV-1) E2 protein at amino acid 102.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is an intractable neurodegenerative disease afflicting 1 in 6-10,000 live births. One of the key functions of the SMN protein is regulation of spliceosome assembly. Reduced levels of the SMN protein that are observed in SMA have been shown to result in aberrant mRNA splicing.
View Article and Find Full Text PDFUnlabelled: E4orf6 proteins from all human adenoviruses form Cullin-based ubiquitin ligase complexes that, in association with E1B55K, target cellular proteins for degradation. While most are assembled with Cul5, a few utilize Cul2. BC-box motifs enable all these E4orf6 proteins to assemble ligase complexes with Elongins B and C.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA), a heritable neurodegenerative disease, results from insufficient levels of the survival motor neuron (SMN) protein. α-COP binds to SMN, linking the COPI vesicular transport pathway to SMA. Reduced levels of α-COP restricted development of neuronal processes in NSC-34 cells and primary cortical neurons.
View Article and Find Full Text PDFUnlabelled: E4orf6 proteins of human adenoviruses form Cullin-based E3 ubiquitin ligase complexes that degrade cellular proteins, which impedes efficient viral replication. These complexes also include the viral E1B55K product, which is believed to recruit most substrates for ubiquitination. Heterogeneity in the composition of these ligases exists, as serotypes representing some species form Cul5-based complexes (species B2, C, D, and E), whereas others utilize Cul2 (species A and F).
View Article and Find Full Text PDFIn adenovirus E4 mutant infections, viral DNAs form concatemers through a process that requires host Non-homologous End Joining (NHEJ) proteins including DNA Ligase IV (LigIV). Adenovirus proteins E4 34k and E1b 55k form the substrate-selection component of an E3 ubiquitin ligase and prevent concatenation by targeting LigIV for proteasomal degradation. The mechanisms and sites involved in targeting this and other E3 ligase substrates generally are poorly-understood.
View Article and Find Full Text PDFAlthough human adenovirus type 5 (Ad5) has been widely studied, relatively little work has been done with other human adenovirus serotypes. The Ad5 E4orf6 and E1B55K proteins form Cul5-based E3 ubiquitin ligase complexes to degrade p53, Mre11, DNA ligase IV, integrin α3, and almost certainly other targets, presumably to optimize the cellular environment for viral replication and perhaps to facilitate persistence or latency. As this complex is essential for the efficient replication of Ad5, we undertook a systematic analysis of the structure and function of corresponding E4orf6/E1B55K complexes from other serotypes to determine the importance of this E3 ligase throughout adenovirus evolution.
View Article and Find Full Text PDFThe ligase IV/XRCC4 complex plays a central role in DNA double-strand break repair by non-homologous end joining (NHEJ). During adenovirus infection, NHEJ is inhibited by viral proteins E4 34k and E1B 55k, which redirect the Cul5/Rbx1/Elongin BC ubiquitin E3 ligase to polyubiquitinate and promote degradation of ligase IV. In cells infected with E1B 55k-deficient adenovirus, ligase IV could not be found in XRCC4-containing complexes and was observed in a novel ligase IV/E4 34k/Cul5/Elongin BC complex.
View Article and Find Full Text PDFPertussis toxin (PTX)-insensitive mutants of Galpha(i/o) proteins expressed in C6mu cells were used to examine the hypothesis that there are agonist-specific conformational states of the mu-opioid receptor with coupling preferences to different Galpha(i/o) subtypes, as measured by the degree of stimulation of [(35)S]guanosine 5'-O-(3-thio)triphosphate (GTPgammaS) binding. Binding of [(35)S]GTPgammaS to endogenous Galpha(i/o) proteins stimulated by the full mu-opioid agonist [d-Ala(2),MePhe(4),Gly(5)-ol]enkephalin (DAMGO) was completely blocked by overnight treatment with 100 ng/ml PTX. Treatment for 4 h with lower concentrations led to a PTX-dependent reduction in the maximal effect of DAMGO but no alteration in the potency of DAMGO or morphine nor in the relative maximal effect (relative efficacy) of the partial agonists morphine and buprenorphine compared with the full agonist DAMGO.
View Article and Find Full Text PDF