Publications by authors named "Timothy Wei"

Article Synopsis
  • Human trachea can take on various shapes, with circular and oval being the most common, while rare shapes like Saber-sheath are often linked to specific diseases.
  • A patient presented with bilateral vocal cord abductor palsy and tracheal stenosis, symptoms of which worsened over 40 years but were particularly severe in the last three years.
  • The case revealed that the patient, who did not have COPD, had a Saber-sheath trachea shape, suggesting that this abnormal shape may not be limited to any single disease.
View Article and Find Full Text PDF
Article Synopsis
  • This research introduces a quick and cost-effective three-cell co-culture system that models the cellular processes involved in atherosclerosis, from initial formation to thickening of the arterial wall.
  • The study developed four distinct culture models that mimic different stages of atherosclerosis, using human coronary artery cells, low-density lipoproteins, and smooth muscle cells, while also investigating the impact of shear stress.
  • The findings indicate that the behavior of cells in these models closely resembles that of cells found in actual atherosclerotic plaques in humans, suggesting potential applications for studying atherosclerosis and testing new drug therapies.
View Article and Find Full Text PDF

Phase-averaged and cycle-to-cycle analysis of key contributors to sound production in phonation is examined in a scaled-up vocal-fold model. Simultaneous temporally and spatially resolved pressure and velocity measurements permitted examination of each term in the streamwise integral momentum equation. The relative sizes of these terms were used to address the issue of whether transglottal pressure is a surrogate for vocal-fold drag, a quantity directly related to sound production.

View Article and Find Full Text PDF

Spatially and temporally resolved Digital Particle Image Velocimetry (DPIV) measurements are presented of flow complexities in a nominally two-dimensional, symmetric, duct with an oscillating constriction. The motivation for this research lies in advancing the state-of-the-art in applying integral control volume analysis to modeling unsteady internal flows. The specific target is acoustic modeling of human phonation.

View Article and Find Full Text PDF

bacteria form biofilms and distinctive microcolony or "tower" structures that facilitate their ability to tolerate antibiotic treatment and to spread within the human body. The formation of microcolonies, which break off, get carried downstream, and serve to initiate biofilms in other parts of the body, is of particular interest here. It is known that flow conditions play a role in the development, dispersion, and propagation of biofilms in general.

View Article and Find Full Text PDF

The shape of a bypass graft plays an important role on its efficacy. Here, we investigated flow through two vascular graft designs-with and without cuff at the anastomosis. We conducted Digital Particle Image Velocimetry (DPIV) measurements to obtain the flow field information through these vascular grafts.

View Article and Find Full Text PDF

Energy storing tendons, such as the human Achilles and equine superficial digital flexor tendon (SDFT), are highly prone to injury, the incidence of which increases with aging. The cellular and molecular mechanisms that result in increased injury in aged tendons are not well established but are thought to result in altered matrix turnover. However, little attempt has been made to fully characterize the tendon proteome nor determine how the abundance of specific tendon proteins changes with aging and/or injury.

View Article and Find Full Text PDF

Attempts to measure the propulsive forces produced by swimming dolphins have been limited. Previous uses of computational hydrodynamic models and gliding experiments have provided estimates of thrust production by dolphins, but these were indirect tests that relied on various assumptions. The thrust produced by two actively swimming bottlenose dolphins (Tursiops truncatus) was directly measured using digital particle image velocimetry (DPIV).

View Article and Find Full Text PDF

Mechanotransduction in endothelial cells (ECs) is a highly complex process through which cells respond to changes in hemodynamic loading by generating biochemical signals involving gene and protein expression. To study the effects of mechanical loading on ECs in a controlled fashion, different in vitro devices have been designed to simulate or replicate various aspects of these physiological phenomena. This paper describes the design, use, and validation of a flow chamber which allows for spatially and temporally resolved micro-particle image velocimetry measurements of endothelial surface topography and stresses over living ECs immersed in pulsatile flow.

View Article and Find Full Text PDF

Background: Diagnosis and treatment of hydrocephalus is hindered by a lack of systemic understanding of the interrelationships between pressures and flow of cerebrospinal fluid in the brain. Control volume analysis provides a fluid physics approach to quantify and relate pressure and flow information. The objective of this study was to use control volume analysis and magnetic resonance velocity imaging to non-invasively estimate pressure differentials in vitro.

View Article and Find Full Text PDF

This paper addresses the dynamic relevance of time variations of phonatory airflow, commonly neglected under the quasisteady phonatory flow assumption. In contrast to previous efforts, which relied on direct measurement of glottal impedance, this work uses spatially and temporally resolved measurements of the velocity field to estimate the unsteady and convective acceleration terms in the unsteady Bernoulli equation. Theoretical considerations suggest that phonatory flow is inherently unsteady when two related conditions apply: (1) that the unsteady and convective accelerations are commensurate, and (2) that the inertia of the glottal jet is non-negligible.

View Article and Find Full Text PDF

Background: To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume conservation; but control volume analysis enforces independent conditions on pressure and volume. Previously, utilization of clinical measurements has been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison.

View Article and Find Full Text PDF

Measurements of the fluid flow through a scaled-up model of the human glottis are presented to determine whether glottal flow may be approximated as unsteady. Time- and space-resolved velocity vector fields from digital particle image velocimetry (DPIV) measurements of the flow through the gap between two moving, rigid walls are presented in four cases, over a range of Strouhal numbers: 0.010, 0.

View Article and Find Full Text PDF

This paper ranks the importance of unsteady aerodynamic mechanisms in glottal flow. Particular emphasis is given to separation point motion, acceleration of glottal airflow by vocal fold motion, and viscous blockage. How nondimensional parameters such as the Reynolds, Strouhal, and Womersley numbers help in this ranking is also addressed.

View Article and Find Full Text PDF

Fibroblast growth factors (FGFs) have been previously implicated in urodele limb regeneration. Here, we examined expression of FGF-1 by blastema cells and neurons and investigated its involvement in wound epithelial formation and function and in the trophic effect of nerves. Neurons innervating the limb and blastema cells in vivo and in vitro expressed the FGF-1 gene.

View Article and Find Full Text PDF