Publications by authors named "Timothy Waller"

Aqueous extracts derived from flowers stimulate germination, secondary conidiation, and appressorial formation of various latent fruit rotting fungi. Even raindrops passing over flowers accumulate sufficient activity to influence the infectivity of fruit rotting fungi. Using a spore germination bioassay, high levels of bioactivity were found in chloroform extracts from plant tissues, implicating the nonpolar components of the cuticle.

View Article and Find Full Text PDF

Spotted-wing drosophila, Drosophila suzukii, and the anthracnose pathogen Colletotrichum fioriniae are an important insect pest and fungal disease of highbush blueberries, respectively, in the United States. However, whether C. fioriniae infection affects D.

View Article and Find Full Text PDF

Floral extracts (FEs) can influence the infectivity and epidemiology of fruit infecting species. In this study, responded to cranberry FEs with an increased rate and magnitude of secondary conidiation and appressorium formation. Four other cranberry fruit rotting species also showed an increased rate of germination in the presence of FEs.

View Article and Find Full Text PDF

To accurately monitor the phenology of the bloom period and the temporal dynamics of floral chemical cues on fungal fruit rotting pathogens, floral extraction methods and coverslip bioassays were developed utilizing Colletotrichum fioriniae. In blueberry and cranberry, this pathogen is optimally controlled by applying fungicides during the bloom period because of the role flowers play in the initial stages of infection. The protocol detailed here describes how floral extracts (FE) were obtained using water-, chloroform-, and field rainwater-based methods for later use in corresponding glass coverslip bioassays.

View Article and Find Full Text PDF

Blueberry anthracnose, caused by Colletotrichum fioriniae, is a pre- and postharvest disease of cultivated highbush blueberry (Vaccinium corymbosum). During disease development, the pathogen undergoes several lifestyle changes during host colonization, including epiphytic, quiescent, and necrotrophic phases. It is not clear, however, what if any host signals alter the pattern of colonization during the initial epiphytic phase and infection.

View Article and Find Full Text PDF