Publications by authors named "Timothy W Yu"

Article Synopsis
  • * Researchers found that the channel's activity increases with age and identified abnormal neuron behavior due to a specific KCNT1 mutation (p.R474H) associated with these conditions.
  • * A clinical trial showed that an antisense oligonucleotide (ASO) therapy significantly reduced seizures in individuals with the mutation, and it’s possible to target the K1.1 channel early in brain development for therapeutic intervention.
View Article and Find Full Text PDF

Developmental Delay with Gastrointestinal, Cardiovascular, Genitourinary, and Skeletal Abnormalities syndrome (DEGCAGS, MIM #619488) is caused by biallelic, loss-of-function (LoF) ZNF699 variants, and is characterized by variable neurodevelopmental disability, discordant organ anomalies among full siblings and infant mortality. ZNF699 encodes a KRAB zinc finger protein of unknown function. We aimed to investigate the genotype-phenotype spectrum of DEGCAGS and the possibility of a diagnostic DNA methylation episignature, to facilitate the diagnosis of a highly variable condition lacking pathognomonic clinical findings.

View Article and Find Full Text PDF
Article Synopsis
  • Diamond-Blackfan Anemia Syndrome (DBS) is a rare condition marked by bone marrow failure and various congenital anomalies, with RPL26 emerging as a key gene associated with it.
  • The study involved patients with RPL26 variants, examining blood cell development and RPL26 expression in a patient’s cells.
  • Findings indicated that RPL26 is linked to multiple congenital issues, especially radial ray anomalies, and bone marrow failure is not always present in DBS, broadening the understanding of the condition’s spectrum.
View Article and Find Full Text PDF

Pathogenic variants in the cyclin-dependent kinase-like 5 (CDKL5) gene are associated with CDKL5 deficiency disorder (CDD), a severe X-linked developmental and epileptic encephalopathy. Deletions affecting the 5' untranslated region (UTR) of CDKL5, which involve the noncoding exon 1 and/or alternatively spliced first exons (exons 1a-e), are uncommonly reported. We describe genetic and phenotypic characteristics for 15 individuals with CDKL5 partial gene deletions affecting the 5' UTR.

View Article and Find Full Text PDF

Purpose: Critically ill infants from marginalized populations disproportionately receive care in neonatal intensive care units (NICUs) that lack access to state-of-the-art genomic care, leading to inequitable outcomes. We sought provider perspectives to inform our implementation study (VIGOR) providing rapid genomic sequencing within these settings.

Methods: We conducted semistructured focus groups with neonatal and genetics providers at 6 NICUs at safety-net hospitals, informed by the Promoting Action on Research Implementation in Health Services framework, which incorporates evidence, context, and facilitation domains.

View Article and Find Full Text PDF
Article Synopsis
  • - The Virtual GenOme CenteR is a study designed to improve access to rapid genomic sequencing (rGS) for critically ill infants from racial and ethnic minority and low-income populations who typically receive care in community settings lacking advanced genomic resources.
  • - The study involves developing a virtual support system for neonatal intensive care units (NICUs) where staff are trained in genomic medicine, and eligible infants (around 250) receive rGS along with follow-up for one year to assess outcomes and evaluate the implementation process.
  • - Ethics approval has been obtained, and the study ensures that participating families provide informed consent while collecting data through various methods, including surveys and interviews with both providers and families, to analyze the effectiveness of the program.
View Article and Find Full Text PDF

While ATM loss of function has long been identified as the genetic cause of ataxia-telangiectasia (A-T), how it leads to selective and progressive degeneration of cerebellar Purkinje and granule neurons remains unclear. ATM expression is enriched in microglia throughout cerebellar development and adulthood. Here, we find evidence of microglial inflammation in the cerebellum of patients with A-T using single-nucleus RNA sequencing.

View Article and Find Full Text PDF

Certain classes of genetic variation still escape detection in clinical sequencing analysis. One such class is retroelement insertion, which has been reported as a cause of Mendelian diseases and may offer unique therapeutic implications. Here, we conducted retroelement profiling on whole-genome sequencing data from a cohort of 237 individuals with ataxia telangiectasia (A-T).

View Article and Find Full Text PDF

Splice-switching antisense oligonucleotides (ASOs) could be used to treat a subset of individuals with genetic diseases, but the systematic identification of such individuals remains a challenge. Here we performed whole-genome sequencing analyses to characterize genetic variation in 235 individuals (from 209 families) with ataxia-telangiectasia, a severely debilitating and life-threatening recessive genetic disorder, yielding a complete molecular diagnosis in almost all individuals. We developed a predictive taxonomy to assess the amenability of each individual to splice-switching ASO intervention; 9% and 6% of the individuals had variants that were 'probably' or 'possibly' amenable to ASO splice modulation, respectively.

View Article and Find Full Text PDF

Most rare diseases are caused by single-gene mutations, and as such, lend themselves to a host of new gene-targeted therapies and technologies including antisense oligonucleotides, phosphomorpholinos, small interfering RNAs, and a variety of gene delivery and gene editing systems. Early successes are encouraging, however, given the substantial number of distinct rare diseases, the ability to scale these successes will be unsustainable without new development efficiencies. Herein, we discuss the need for genomic newborn screening to match pace with the growing development of targeted therapeutics and ability to rapidly develop individualized therapies for rare variants.

View Article and Find Full Text PDF

The cost and time needed to conduct whole-genome sequencing (WGS) have decreased significantly in the last 20 years. At the same time, the number of conditions with a known molecular basis has steadily increased, as has the number of investigational new drug applications for novel gene-based therapeutics. The prospect of precision gene-targeted therapy for all seems in reach… or is it? Here we consider practical and strategic considerations that need to be addressed to establish a foundation for the early, effective, and equitable delivery of these treatments.

View Article and Find Full Text PDF

Recent advancements in gene-targeted therapies have highlighted the critical role data sharing plays in successful translational drug development for people with rare diseases. To scale these efforts, we need to systematize these sharing principles, creating opportunities for more rapid, efficient, and scalable drug discovery/testing including long-term and transparent assessment of clinical safety and efficacy. A number of challenges will need to be addressed, including the logistical difficulties of studying rare diseases affecting individuals who may be scattered across the globe, scientific, technical, regulatory, and ethical complexities of data collection, and harmonization and integration across multiple platforms and contexts.

View Article and Find Full Text PDF

Antisense oligonucleotides (ASOs) can modulate pre-mRNA splicing. This offers therapeutic opportunities for numerous genetic diseases, often in a mutation-specific and sometimes even individual-specific manner. Developing therapeutic ASOs for as few as even a single patient has been shown feasible with the development of Milasen for an individual with Batten disease.

View Article and Find Full Text PDF

Rare genetic disorders affect as many as 3%-5% of all babies born. Approximately 10,000 such disorders have been identified or hypothesized to exist. Treatment is supportive except in a limited number of instances where specific therapies exist.

View Article and Find Full Text PDF

The SARS-CoV-2 virus has triggered a worldwide pandemic. According to the BioGrid database, CLN7 (MFSD8) is thought to interact with several viral proteins. The aim of this work was to investigate a possible involvement of CLN7 in the infection process.

View Article and Find Full Text PDF

Genomic sequencing is a powerful diagnostic tool in critically ill infants, but performing exome or genome sequencing (ES/GS) in the context of a research study is different from implementing these tests clinically. We investigated the integration of rapid ES into routine clinical care after a pilot research study in a Level IV Neonatal Intensive Care Unit (NICU). We performed a retrospective cohort analysis of infants admitted with suspected genetic disorders to the NICU from December 1, 2018 to March 31, 2021 and compared results to those obtained from a previous research study cohort (March 1, 2017 to November 30, 2018).

View Article and Find Full Text PDF

Mutations in the gene are the cause of an ultra-rare neurological disorder characterized by intellectual disability, impaired speech, motor delay, and hypotonia evolving to spasticity, central sleep apnea, and premature death (SPG49 or HSAN9; OMIM: 615031). Little is known about the biological function of TECPR2, and there are currently no available disease-modifying therapies for this disease. Here we describe implementation of an antisense oligonucleotide (ASO) exon-skipping strategy targeting c.

View Article and Find Full Text PDF
Article Synopsis
  • Neurological disorders can potentially be treated with gene-targeting therapies like antisense oligonucleotides (ASOs) or viral vectors, with many treatments approved by the FDA and others in clinical trials, though ASOs may show dose-dependent neurotoxicity.
  • Quantitative sensory testing (QST) is a method involving standardized measures to detect sensory dysfunction, relying on self-reports or task performance, and is important for assessing non-verbal patients in trials for investigational drug therapies.
  • The report discusses personalized QST approaches for three children with neurodevelopmental disorders, highlighting the need for improved assessments to monitor sensory processing and safety in clinical trials, while suggesting the importance of data
View Article and Find Full Text PDF

Purpose: To develop an evidence-based clinical practice guideline for the use of exome and genome sequencing (ES/GS) in the care of pediatric patients with one or more congenital anomalies (CA) with onset prior to age 1 year or developmental delay (DD) or intellectual disability (ID) with onset prior to age 18 years.

Methods: The Pediatric Exome/Genome Sequencing Evidence-Based Guideline Work Group (n = 10) used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) evidence to decision (EtD) framework based on the recent American College of Medical Genetics and Genomics (ACMG) systematic review, and an Ontario Health Technology Assessment to develop and present evidence summaries and health-care recommendations. The document underwent extensive internal and external peer review, and public comment, before approval by the ACMG Board of Directors.

View Article and Find Full Text PDF

Purpose: Newborn screening (NBS) is performed to identify neonates at risk for actionable, severe, early-onset disorders, many of which are genetic. The BabySeq Project randomized neonates to receive conventional NBS or NBS plus exome sequencing (ES) capable of detecting sequence variants that may also diagnose monogenic disease or indicate genetic disease risk. We therefore evaluated how ES and conventional NBS results differ in this population.

View Article and Find Full Text PDF

Purpose: We describe a novel neurobehavioral phenotype of autism spectrum disorder (ASD), intellectual disability, and/or attention-deficit/hyperactivity disorder (ADHD) associated with de novo or inherited deleterious variants in members of the RFX family of genes. RFX genes are evolutionarily conserved transcription factors that act as master regulators of central nervous system development and ciliogenesis.

Methods: We assembled a cohort of 38 individuals (from 33 unrelated families) with de novo variants in RFX3, RFX4, and RFX7.

View Article and Find Full Text PDF