Measuring optical rotations in materials is a useful tool in many experimental studies. Research may be limited by the ability to measure small rotations due to weak interactions. We propose a novel scheme wherein we use a coupled waveguide and ring resonator to amplify the effects of optical rotation, potentially opening new avenues for investigation.
View Article and Find Full Text PDFOpt Express
September 2013
Designing photonic crystal cavities with high quality factors and low mode volumes is of great importance for maximizing interactions of light and matter in metamaterials. Previous work on photonic crystal cavities has revealed dramatic improvements in performance by fine-tuning the device design. In L3 cavities, slight shifts of the holes on the edge of the cavity have been found to greatly increase quality factors without significantly altering the mode volume.
View Article and Find Full Text PDFWe investigate the nonlinear emission dynamics of quantum dots coupled to photonic crystal cavities in the Purcell regime using luminescence intensity autocorrelation. Two laser pulses with a controlled time delay sequentially excite the coupled system inducing emission that depends on the delay and laser power. We find distinct contrasts between exciton and biexciton emission as a function of time delay which originate from different nonlinearities.
View Article and Find Full Text PDFWe report on scanning microphotoluminescence measurements that spectrally and spatially resolve emission from individual InAs quantum dots that were induced by focused ion beam patterning. Multilayers of quantum dots were spaced 2 μm apart, with a minimum single dot emission line width of 160 μeV, indicating good optical quality for dots patterned using this technique. Mapping 16 array sites, at least 65% were occupied by optically active dots and the spectral inhomogeneity was within 30 meV.
View Article and Find Full Text PDF