Publications by authors named "Timothy W Boorady"

Neonates undergoing cardiac surgery involving aortic arch reconstruction are at an increased risk for hypoxic-ischemic brain injury. Deep hypothermia is utilized to help mitigate this risk when periods of circulatory arrest are needed for surgical repair. Here, we investigate correlations between non-invasive optical neuromonitoring of cerebral hemodynamics, which has recently shown promise for the prediction of postoperative white matter injury in this patient population, and invasive cerebral microdialysis biomarkers.

View Article and Find Full Text PDF

Background: Cerebral autoregulation mechanisms help maintain adequate cerebral blood flow (CBF) despite changes in cerebral perfusion pressure. Impairment of cerebral autoregulation, during and after cardiopulmonary bypass (CPB), may increase risk of neurologic injury in neonates undergoing surgery. In this study, alterations of cerebral autoregulation were assessed in a neonatal swine model probing four perfusion strategies.

View Article and Find Full Text PDF

Neurologic injury is a leading cause of morbidity and mortality following pediatric cardiac arrest. In this study, we assess the feasibility of quantitative, non-invasive, frequency-domain diffuse optical spectroscopy (FD-DOS) neuromonitoring during cardiopulmonary resuscitation (CPR), and its predictive utility for return of spontaneous circulation (ROSC) in an established pediatric swine model of cardiac arrest. Cerebral tissue optical properties, oxy- and deoxy-hemoglobin concentration ([HbO], [Hb]), oxygen saturation (StO) and total hemoglobin concentration (THC) were measured by a FD-DOS probe placed on the forehead in 1-month-old swine (8-11 kg; n = 52) during seven minutes of asphyxiation followed by twenty minutes of CPR.

View Article and Find Full Text PDF

Objective: We aimed to determine the effects of selective antegrade cerebral perfusion compared with other perfusion strategies on indices of cerebral blood flow, oxygenation, cellular stress, and mitochondrial function.

Methods: One-week-old piglets (n = 41) were assigned to 5 treatment groups. Thirty-eight were placed on cardiopulmonary bypass.

View Article and Find Full Text PDF

Background: Despite controversies, epinephrine remains a mainstay of cardiopulmonary resuscitation (CPR). Recent animal studies have suggested that epinephrine may decrease cerebral blood flow (CBF) and cerebral oxygenation, possibly potentiating neurological injury during CPR. We investigated the cerebrovascular effects of intravenous epinephrine in a swine model of pediatric in-hospital cardiac arrest.

View Article and Find Full Text PDF

Background: Extra-corporeal membrane oxygenation (ECMO) is a life-saving intervention for severe respiratory and cardiac diseases. However, 50% of survivors have abnormal neurologic exams. Current ECMO management is guided by systemic metrics, which may poorly predict cerebral perfusion.

View Article and Find Full Text PDF

Management of deep hypothermic (DH) cardiopulmonary bypass (CPB), a critical neuroprotective strategy, currently relies on non-invasive temperature to guide cerebral metabolic suppression during complex cardiac surgery in neonates. Considerable inter-subject variability in temperature response and residual metabolism may contribute to the persisting risk for postoperative neurological injury. To characterize and mitigate this variability, we assess the sufficiency of conventional nasopharyngeal temperature (NPT) guidance, and in the process, validate combined non-invasive frequency-domain diffuse optical spectroscopy (FD-DOS) and diffuse correlation spectroscopy (DCS) for direct measurement of cerebral metabolic rate of oxygen ().

View Article and Find Full Text PDF

Background: Piglets are used to study neurologic effects of deep hypothermic circulatory arrest (DHCA), but no studies have compared human and swine electroencephalogram (EEG) responses to DHCA. The importance of isoelectricity before circulatory arrest is not fully known in neonates. We compared the EEG response to DHCA in human neonates and piglets.

View Article and Find Full Text PDF

Background: Hypoxic-ischemic white matter brain injury commonly occurs in neonates with critical congenital heart disease. Recent work has shown that longer time to surgery is associated with increased risk for this injury. In this study we investigated changes in perinatal cerebral hemodynamics during the transition from fetal to neonatal circulation to ascertain mechanisms that might underlie this risk.

View Article and Find Full Text PDF

Objectives: Controversy remains regarding the use of deep hypothermic circulatory arrest (DHCA) in neonatal cardiac surgery. Alterations in cerebral mitochondrial bioenergetics are thought to contribute to ischaemia-reperfusion injury in DHCA. The purpose of this study was to compare cerebral mitochondrial bioenergetics for DHCA with deep hypothermic continuous perfusion using a neonatal swine model.

View Article and Find Full Text PDF