Publications by authors named "Timothy Vaughan"

Accurately estimating the effective reproduction number (Rt) of a circulating pathogen is a fundamental challenge in the study of infectious disease. The fields of epidemiology and pathogen phylodynamics both share this goal, but to date, methodologies and data employed by each remain largely distinct. Here we present EpiFusion: a joint approach that can be used to harness the complementary strengths of each field to improve estimation of outbreak dynamics for large and poorly sampled epidemics, such as arboviral or respiratory virus outbreaks, and validate it for retrospective analysis.

View Article and Find Full Text PDF

Elucidating disease spread between subpopulations is crucial in guiding effective disease control efforts. Genomic epidemiology and phylodynamics have emerged as key principles to estimate such spread from pathogen phylogenies derived from molecular data. Two well-established structured phylodynamic methodologies - based on the coalescent and the birth-death model - are frequently employed to estimate viral spread between populations.

View Article and Find Full Text PDF

Time-dependent birth-death sampling models have been used in numerous studies for inferring past evolutionary dynamics in different biological contexts, e.g. speciation and extinction rates in macroevolutionary studies, or effective reproductive number in epidemiological studies.

View Article and Find Full Text PDF

Summary: Phylodynamic models link phylogenetic trees to biologically-relevant parameters such as speciation and extinction rates (macroevolution), effective population sizes and migration rates (ecology and phylogeography), and transmission and removal/recovery rates (epidemiology) to name a few. Being able to simulate phylogenetic trees and population dynamics under these models is the basis for (i) developing and testing of phylodynamic inference algorithms, (ii) performing simulation studies which quantify the biases stemming from model-misspecification, and (iii) performing so-called model adequacy assessments by simulating samples from the posterior predictive distribution. Here I introduce ReMASTER, a package for the phylogenetic inference platform BEAST 2 that provides a simple and efficient approach to specifying and simulating the phylogenetic trees and population dynamics arising from phylodynamic models.

View Article and Find Full Text PDF

We estimate the basic reproductive number and case counts for 15 distinct Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks, distributed across 11 populations (10 countries and one cruise ship), based solely on phylodynamic analyses of genomic data. Our results indicate that, prior to significant public health interventions, the reproductive numbers for 10 (out of 15) of these outbreaks are similar, with median posterior estimates ranging between 1.4 and 2.

View Article and Find Full Text PDF

Despite its increasing role in the understanding of infectious disease transmission at the applied and theoretical levels, phylodynamics lacks a well-defined notion of ideal data and optimal sampling. We introduce a method to visualize and quantify the relative impact of pathogen genome sequence and sampling times-two fundamental sources of data for phylodynamics under birth-death-sampling models-to understand how each drives phylodynamic inference. Applying our method to simulated data and real-world SARS-CoV-2 and H1N1 Influenza data, we use this insight to elucidate fundamental trade-offs and guidelines for phylodynamic analyses to draw the most from sequence data.

View Article and Find Full Text PDF

In 2013 to 2017, avian influenza A(H7N9) virus has caused five severe epidemic waves of human infections in China. The role of live bird markets (LBMs) in the transmission dynamics of H7N9 remains unclear. Using a Bayesian phylodynamic approach, we shed light on past H7N9 transmission events at the human-LBM interface that were not directly observed using case surveillance data-based approaches.

View Article and Find Full Text PDF

Since their introduction in 1859, European rabbits () have had a devastating impact on agricultural production and biodiversity in Australia, with competition and land degradation by rabbits being one of the key threats to agricultural and biodiversity values in Australia. Biocontrol agents, with the most important being the rabbit haemorrhagic disease virus 1 (RHDV1), constitute the most important landscape-scale control strategies for rabbits in Australia. Monitoring field strain dynamics is complex and labour-intensive.

View Article and Find Full Text PDF

In winter 2016-7, Europe was severely hit by an unprecedented epidemic of highly pathogenic avian influenza viruses (HPAIVs), causing a significant impact on animal health, wildlife conservation, and livestock economic sustainability. By applying phylodynamic tools to virus sequences collected during the epidemic, we investigated when the first infections occurred, how many infections were unreported, which factors influenced virus spread, and how many spillover events occurred. HPAIV was likely introduced into poultry farms during the autumn, in line with the timing of wild birds' migration.

View Article and Find Full Text PDF

Genome sequences from evolving infectious pathogens allow quantification of case introductions and local transmission dynamics. We sequenced 11,357 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from Switzerland in 2020-the sixth largest effort globally. Using a representative subset of these data, we estimated viral introductions to Switzerland and their persistence over the course of 2020.

View Article and Find Full Text PDF

The multi-type birth-death model with sampling is a phylodynamic model which enables the quantification of past population dynamics in structured populations based on phylogenetic trees. The BEAST 2 package implements an algorithm for numerically computing the probability density of a phylogenetic tree given the population dynamic parameters under this model. In the initial release of , analyses were computationally limited to trees consisting of up to approximately 250 genetic samples.

View Article and Find Full Text PDF

The spread of antibiotic resistance genes on plasmids is a threat to human and animal health. Phylogenies of bacteria and their plasmids contain clues regarding the frequency of plasmid transfer events, as well as the co-evolution of plasmids and their hosts. However, whole genome sequencing data from diverse ecological or clinical bacterial samples are rarely used to study plasmid phylogenies and resistance gene transfer.

View Article and Find Full Text PDF

When two influenza viruses co-infect the same cell, they can exchange genome segments in a process known as reassortment. Reassortment is an important source of genetic diversity and is known to have been involved in the emergence of most pandemic influenza strains. However, because of the difficulty in identifying reassortment events from viral sequence data, little is known about their role in the evolution of the seasonal influenza viruses.

View Article and Find Full Text PDF

Phylodynamics requires an interdisciplinary understanding of phylogenetics, epidemiology, and statistical inference. It has also experienced more intense application than ever before amid the SARS-CoV-2 pandemic. In light of this, we present a review of phylodynamic models beginning with foundational models and assumptions.

View Article and Find Full Text PDF

The structured coalescent allows inferring migration patterns between viral subpopulations from genetic sequence data. However, these analyses typically assume that no genetic recombination process impacted the sequence evolution of pathogens. For segmented viruses, such as influenza, that can undergo reassortment this assumption is broken.

View Article and Find Full Text PDF

Metabolomics methods often encounter trade-offs between quantification accuracy and coverage, with truly comprehensive coverage only attainable through a multitude of complementary assays. Due to the lack of standardization and the variety of metabolomics assays, it is difficult to integrate datasets across studies or assays. To inform metabolomics platform selection, with a focus on posttraumatic stress disorder (PTSD), we review platform use and sample sizes in psychiatric metabolomics studies and then evaluate five prominent metabolomics platforms for coverage and performance, including intra-/inter-assay precision, accuracy, and linearity.

View Article and Find Full Text PDF

Evolutionary models account for either population- or species-level processes but usually not both. We introduce a new model, the FBD-MSC, which makes it possible for the first time to integrate both the genealogical and fossilization phenomena, by means of the multispecies coalescent (MSC) and the fossilized birth-death (FBD) processes. Using this model, we reconstruct the phylogeny representing all extant and many fossil Caninae, recovering both the relative and absolute time of speciation events.

View Article and Find Full Text PDF

Following its emergence in late 2019, the spread of SARS-CoV-2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020.

View Article and Find Full Text PDF

Amongst newly developed approaches to analyse molecular data, phylodynamic models are receiving much attention because of their potential to reveal changes to viral populations over short periods. This knowledge can be very important for understanding disease impacts. However, their accuracy needs to be fully understood, especially in relation to wildlife disease epidemiology, where sampling and prior knowledge may be limited.

View Article and Find Full Text PDF

The investigation of migratory patterns during the SARS-CoV-2 pandemic before spring 2020 border closures in Europe is a crucial first step toward an in-depth evaluation of border closure policies. Here we analyze viral genome sequences using a phylodynamic model with geographic structure to estimate the origin and spread of SARS-CoV-2 in Europe prior to border closures. Based on SARS-CoV-2 genomes, we reconstruct a partial transmission tree of the early pandemic and coinfer the geographic location of ancestral lineages as well as the number of migration events into and between European regions.

View Article and Find Full Text PDF

Following its emergence in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic resulting in unprecedented efforts to reduce transmission and develop therapies and vaccines (WHO Emergency Committee, 2020; Zhu et al., 2020). Rapidly generated viral genome sequences have allowed the spread of the virus to be tracked via phylogenetic analysis (Worobey et al.

View Article and Find Full Text PDF

We consider a homogeneous birth-death process with three different sampling schemes. First, individuals can be sampled through time and included in a reconstructed phylogenetic tree. Second, they can be sampled through time and only recorded as a point 'occurrence' along a timeline.

View Article and Find Full Text PDF

Reassortment is an important source of genetic diversity in segmented viruses and is the main source of novel pathogenic influenza viruses. Despite this, studying the reassortment process has been constrained by the lack of a coherent, model-based inference framework. Here, we introduce a coalescent-based model that allows us to explicitly model the joint coalescent and reassortment process.

View Article and Find Full Text PDF

The reproductive number in Switzerland was between 1.5 and 2 during the first third of March, and has consistently decreased to around 1. After the announcement of the latest strict measure on 20 March 2020, namely that gatherings of more than five people in public spaces are prohibited, the reproductive number dropped significantly below 1; the authors of this study estimate the reproductive number to be between 0.

View Article and Find Full Text PDF