Publications by authors named "Timothy Tyree"

Article Synopsis
  • The study develops a new, efficient particle model to simulate pair-annihilation events of spiral wave tips in cardiac models, which are usually studied through complex simulations.
  • Spiral wave tips are modeled as particles influenced by diffusion and short-range attraction, with parameters derived from their actual behavior in cardiac systems during chaotic states.
  • The particle model effectively replicates the annihilation rates and can predict the average time until spiral wave termination, revealing that enhancing attraction between particles could be a potential focus for drug development.
View Article and Find Full Text PDF

Pair-annihilation events are ubiquitous in a variety of spatially extended systems and are often studied using computationally expensive simulations. Here we develop an approach in which we simulate the pair-annihilation of spiral wave tips in cardiac models using a computationally efficient particle model. Spiral wave tips are represented as particles with dynamics governed by diffusive behavior and short-ranged attraction.

View Article and Find Full Text PDF

Faces and voices are the dominant social signals used to recognize individuals among primates. Yet, it is not known how these signals are integrated into a cross-modal representation of individual identity in the primate brain. We discovered that, although single neurons in the marmoset hippocampus exhibited selective responses when presented with the face or voice of a specific individual, a parallel mechanism for representing the cross-modal identities for multiple individuals was evident within single neurons and at the population level.

View Article and Find Full Text PDF

Chemotaxis, the guided motion of cells by chemical gradients, plays a crucial role in many biological processes. In the social amoeba , chemotaxis is critical for the formation of cell aggregates during starvation. The cells in these aggregates generate a pulse of the chemoattractant, cyclic adenosine 3',5'-monophosphate (cAMP), every 6 min to 10 min, resulting in surrounding cells moving toward the aggregate.

View Article and Find Full Text PDF

The glass-phase densities at T = 77 K of aqueous solutions of the common cryoprotective agents (CPAs) methanol, ethanol, 2-propanol, glycerol, 2-methyl-2,4-pentanediol (MPD), ethylene glycol, polyethylene glycol 200 and polypropylene glycol 425 were measured as a function of CPA concentration. Individual drops with volumes as small as ∼65 pl were rapidly cooled to achieve the glass phase, and their densities at T = 77 K were determined by cryoflotation. These densities were used to determine the glass-phase electron density of each solution and its volume thermal contraction between room temperature and 77 K.

View Article and Find Full Text PDF

We demonstrate a method for determining the vitreous phase cryogenic temperature densities of aqueous mixtures, and other samples that require rapid cooling, to prepare the desired cryogenic temperature phase. Microliter to picoliter size drops are cooled by projection into a liquid nitrogen-argon (N2-Ar) mixture. The cryogenic temperature phase of the drop is evaluated using a visual assay that correlates with X-ray diffraction measurements.

View Article and Find Full Text PDF

The thermal contraction of aqueous cryoprotectant solutions on cooling to cryogenic temperatures is of practical importance in protein cryocrystallography and in biological cryopreservation. In the former case, differential contraction on cooling of protein molecules and their lattice relative to that of the internal and surrounding solvent may lead to crystal damage and the degradation of crystal diffraction properties. Here, the amorphous phase densities of aqueous solutions of glycerol and ethylene glycol at T = 77 K have been determined.

View Article and Find Full Text PDF