Publications by authors named "Timothy Tapscott"

Methanotrophic bacteria play a crucial role in the Earth's biogeochemical cycle and have the potential to be employed in industrial biomanufacturing processes due to their capacity to use natural gas- and biogas-derived methane as a sole carbon and energy source. Advanced gene-editing systems have the potential to enable rapid, high-throughput methanotrophic genetics and biocatalyst development. To this end, we employed a series of broad-host-range expression plasmids to construct a conjugatable lustered egularly nterspaced hort alindromic epeats (CRISPR)/Cas9 gene-editing system in (Bath).

View Article and Find Full Text PDF

The metabolic processes that enable the replication of intracellular Salmonella under nitrosative stress conditions engendered in the innate response of macrophages are poorly understood. A screen of Salmonella transposon mutants identified the ABC-type high-affinity zinc uptake system ZnuABC as a critical determinant of the adaptation of Salmonella to the nitrosative stress generated by the enzymatic activity of inducible nitric oxide (NO) synthase of mononuclear phagocytic cells. NO limits the virulence of a znuB mutant in an acute murine model of salmonellosis.

View Article and Find Full Text PDF

The repressive activity of ancestral histone-like proteins helps integrate transcription of foreign genes with discrepant AT content into existing regulatory networks. Our investigations indicate that the AT-rich discriminator region located between the -10 promoter element and the transcription start site of the regulatory gene ssrA plays a distinct role in the balanced expression of the Salmonella pathogenicity island-2 (SPI2) type III secretion system. The RNA polymerase-binding protein DksA activates the ssrAB regulon post-transcriptionally, whereas the alarmone guanosine tetraphosphate (ppGpp) relieves the negative regulation imposed by the AT-rich ssrA discriminator region.

View Article and Find Full Text PDF

For pathogenic bacteria, the ability to sense and respond to environmental stresses encountered within the host is critically important, allowing them to adapt to changing conditions and express virulence genes appropriately. This review considers the diverse molecular mechanisms by which stress conditions are sensed by bacteria, how related signals are discriminated, and how stress responses are integrated, highlighting recent studies in selected bacterial pathogens of clinical relevance.

View Article and Find Full Text PDF

Pathogenic bacteria must withstand diverse host environments during infection. Environmental signals, such as pH, temperature, nutrient limitation, etc., not only trigger adaptive responses within bacteria to these specific stress conditions but also direct the expression of virulence genes at an appropriate time and place.

View Article and Find Full Text PDF
Article Synopsis
  • The four-cysteine zinc finger motif in DksA is crucial for its role in bacterial response to nutritional stress and oxidative threats.
  • Complementary studies using Salmonella and Pseudomonas aeruginosa reveal that variations in cysteine and zinc content in DksA proteins affect their ability to sense reactive species and regulate transcription.
  • C2 DksA, lacking zinc, leads to heightened sensitivity to oxidative stress and reduced virulence, emphasizing how finely tuned DksA proteins are for optimal bacterial survival and pathogenicity under different environmental stresses.
View Article and Find Full Text PDF

Redox-based signaling is fundamental to the capacity of bacteria to sense, and respond to, nitrosative and oxidative stress encountered in natural and host environments. The conserved RNA polymerase regulatory protein DksA is a thiol-based sensor of reactive nitrogen and oxygen species. DksA-dependent transcriptional control promotes antinitrosative and antioxidative defenses that contribute to Salmonella pathogenesis.

View Article and Find Full Text PDF

Our investigations show that nonlethal concentrations of nitric oxide (NO) abrogate the antibiotic activity of β-lactam antibiotics against Burkholderia pseudomallei, Escherichia coli and nontyphoidal Salmonella enterica serovar Typhimurium. NO protects B. pseudomallei already exposed to β-lactams, suggesting that this diatomic radical tolerizes bacteria against the antimicrobial activity of this important class of antibiotics.

View Article and Find Full Text PDF

We show that thiols in the 4-cysteine zinc-finger motif of DksA, an RNA polymerase accessory protein known to regulate the stringent response, sense oxidative and nitrosative stress. Hydrogen peroxide- or nitric oxide (NO)-mediated modifications of thiols in the DksA 4-cysteine zinc-finger motif release the metal cofactor and drive reversible changes in the α-helicity of the protein. Wild-type and relA spoT mutant Salmonella, but not isogenic dksA-deficient bacteria, experience the downregulation of r-protein and amino acid transport expression after NO treatment, suggesting that DksA can regulate gene expression in response to NO congeners independently of the ppGpp alarmone.

View Article and Find Full Text PDF