Publications by authors named "Timothy T Li"

Objective: Serologically active clinically quiescent (SACQ) patients with systemic lupus erythematosus (SLE) are clinically quiescent despite serologic activity. Since studies suggest that antichromatin antibodies are more sensitive than anti-dsDNA antibodies in detecting active SLE, and that immunoglobulin (Ig) G, in particular complement-fixing subclasses, may be more pathogenic than IgM, we investigated the levels of anti-dsDNA and antichromatin isotypes in SACQ patients as compared to non-SACQ patients with SLE.

Methods: Levels of IgM, IgA, IgG, and IgG1-4 antichromatin and anti-dsDNA were measured by ELISA.

View Article and Find Full Text PDF

Previous studies suggest that the B cells of patients with Systemic Lupus Erythematosus (SLE) are hyper-responsive to BCR crosslinking; however, it has been unclear whether this is the result of altered B cell signaling or differences in various B cell subpopulations in SLE patients as compared to healthy controls. Here we have developed a novel Phosflow technique that permits examination of cell signaling in distinct B cell subpopulations stratified based upon developmental stage and cell surface IgM levels, which we use to show that the naïve B cells of SLE patients are hyper-responsive to IgM receptor crosslinking, resulting in increased SYK phosphorylation. We further demonstrate that this hyper-responsiveness is most marked in the transitional B cell subset and that it is associated with altered function, resulting in decreased apoptosis and increased proliferation of these cells.

View Article and Find Full Text PDF

Numerous mapping studies have implicated genetic intervals from lupus-prone New Zealand Black (NZB) chromosomes 1 and 4 as contributing to lupus pathogenesis. By introgressing NZB chromosomal intervals onto a non-lupus-prone B6 background, we determined that: NZB chromosome 1 congenic mice (denoted B6.NZBc1) developed fatal autoimmune-mediated kidney disease, and NZB chromosome 4 congenic mice (denoted B6.

View Article and Find Full Text PDF

The lipid mediator lysophosphatidic acid (LPA) plays a role in cancer progression and signals via specific G protein-coupled receptors, LPA(1-3). LPA has been shown to enhance the metastasis of breast carcinoma cells to bone. However, the mechanisms by which LPA receptors regulate breast cancer cell migration and invasion remain unclear.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) is a major constituent of blood and is involved in a variety of physiological and pathophysiological processes. LPA signals via the ubiquitously expressed G protein-coupled receptors (GPCRs), LPA(1) and LPA(2) that are specific for LPA. However, in large, the molecular mechanisms that regulate the signalling of these receptors are unknown.

View Article and Find Full Text PDF