J Cardiovasc Comput Tomogr
August 2018
Propelled by the synergy of the groundbreaking advancements in the ability to analyze high-dimensional datasets and the increasing availability of imaging and clinical data, machine learning (ML) is poised to transform the practice of cardiovascular medicine. Owing to the growing body of literature validating both the diagnostic performance as well as the prognostic implications of anatomic and physiologic findings, coronary computed tomography angiography (CCTA) is now a well-established non-invasive modality for the assessment of cardiovascular disease. ML has been increasingly utilized to optimize performance as well as extract data from CCTA as well as non-contrast enhanced cardiac CT scans.
View Article and Find Full Text PDF