Publications by authors named "Timothy Strutzenberg"

HIV-1 infection depends on the integration of viral DNA into host chromatin. Integration is mediated by the viral enzyme integrase and is blocked by integrase strand transfer inhibitors (INSTIs), first-line antiretroviral therapeutics widely used in the clinic. Resistance to even the best INSTIs is a problem, and the mechanisms of resistance are poorly understood.

View Article and Find Full Text PDF

Single-particle analysis (SPA) by cryo-electron microscopy (cryo-EM) is now a mainstream technique for high-resolution structural biology. Structure determination by SPA relies upon obtaining multiple distinct views of a macromolecular object vitrified within a thin layer of ice. Ideally, a collection of uniformly distributed random projection orientations would amount to all possible views of the object, giving rise to reconstructions characterized by isotropic directional resolution.

View Article and Find Full Text PDF

Among various protein posttranslational modifiers, poly-ADP-ribose polymerase 1 (PARP1) is a key player for regulating numerous cellular processes and events through enzymatic attachments of target proteins with ADP-ribose units donated by nicotinamide adenine dinucleotide (NAD). Human PARP1 is involved in the pathogenesis and progression of many diseases. PARP1 inhibitors have received approvals for cancer treatment.

View Article and Find Full Text PDF

GPR158 is an orphan G protein–coupled receptor (GPCR) highly expressed in the brain, where it controls synapse formation and function. GPR158 has also been implicated in depression, carcinogenesis, and cognition. However, the structural organization and signaling mechanisms of GPR158 are largely unknown.

View Article and Find Full Text PDF

The retinoic acid receptor-related orphan receptor γ (RORγ) is a ligand-dependent transcription factor of the nuclear receptor super family that underpins metabolic activity, immune function, and cancer progression. Despite being a valuable drug target in health and disease, our understanding of the ligand-dependent activities of RORγ is far from complete. Like most nuclear receptors, RORγ must recruit coregulatory protein to enact the RORγ target gene program.

View Article and Find Full Text PDF

Circularized nandiscs (cNDs) exhibit superb monodispersity and have the potential to transform functional and structural studies of membrane proteins. In particular, cNDs can stabilize large patches of lipid bilayers for the reconstitution of complex membrane biochemical reactions, enabling the capture of crucial intermediates involved in synaptic transmission and viral entry. However, previous methods for building cNDs require multiple steps and suffer from low yields.

View Article and Find Full Text PDF

Adenosine monophosphate (AMP)-activated protein kinase (AMPK) regulates metabolism in response to the cellular energy states. Under energy stress, AMP stabilizes the active AMPK conformation, in which the kinase activation loop (AL) is protected from protein phosphatases, thus keeping the AL in its active, phosphorylated state. At low AMP:ATP (adenosine triphosphate) ratios, ATP inhibits AMPK by increasing AL dynamics and accessibility.

View Article and Find Full Text PDF

Heme is the endogenous ligand for the constitutively repressive REV-ERB nuclear receptors, REV-ERBα (NR1D1) and REV-ERBβ (NR1D2), but how heme regulates REV-ERB activity remains unclear. Cellular studies indicate that heme is required for the REV-ERBs to bind the corepressor NCoR and repress transcription. However, fluorescence-based biochemical assays suggest that heme displaces NCoR; here, we show that this is due to a heme-dependent artifact.

View Article and Find Full Text PDF

Protein poly-ADP-ribosylation (PARylation) is a heterogeneous and dynamic post-translational modification regulated by various writers, readers, and erasers. It participates in a variety of biological events and is involved in many human diseases. Currently, tools and technologies have yet to be developed for unambiguously defining readers and erasers of individual PARylated proteins or cognate PARylated proteins for known readers and erasers.

View Article and Find Full Text PDF

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019 has triggered an ongoing global pandemic whereby infection may result in a lethal severe pneumonia-like disease designated as coronavirus disease 2019 (COVID-19). To date, millions of confirmed cases and hundreds of thousands of deaths have been reported worldwide, and there are currently no medical countermeasures available to prevent or treat the disease. The purported development of a vaccine could require at least 1-4 years, while the typical timeline from hit finding to drug registration of an antiviral is >10 years.

View Article and Find Full Text PDF

Hydrogen/Deuterium Exchange (HDX) coupled with Mass Spectrometry (HDX-MS) is a sensitive and robust method to probe protein conformational changes and protein-ligand interactions. HDX-MS relies on successful proteolytic digestion of target proteins under acidic conditions to localize perturbations in exchange behavior to protein structure. The ability of the protease to produce small peptides and overlapping fragments and provide sufficient coverage of the protein sequence is essential for localizing regions of interest.

View Article and Find Full Text PDF

Structures of biomolecular systems are increasingly computed by integrative modeling. In this approach, a structural model is constructed by combining information from multiple sources, including varied experimental methods and prior models. In 2019, a Workshop was held as a Biophysical Society Satellite Meeting to assess progress and discuss further requirements for archiving integrative structures.

View Article and Find Full Text PDF
Article Synopsis
  • Proteins are flexible and dynamic rather than rigid, making it important to study their behavior in physiological conditions.* -
  • The technique of hydrogen deuterium exchange coupled with mass spectrometry (HDX-MS) is introduced as a valuable method to explore protein dynamics, with case studies involving nuclear and innate immunity receptors.* -
  • Recent advancements in software are improving data analysis and visualization of HDX-MS results, enhancing our understanding of protein structure and function.*
View Article and Find Full Text PDF

Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful biophysical technique being increasingly applied to a wide variety of problems. As the HDX-MS community continues to grow, adoption of best practices in data collection, analysis, presentation and interpretation will greatly enhance the accessibility of this technique to nonspecialists. Here we provide recommendations arising from community discussions emerging out of the first International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX; 2017).

View Article and Find Full Text PDF

Members of the nuclear receptor (NR) superfamily regulate both physiological and pathophysiological processes ranging from development and metabolism to inflammation and cancer. Synthetic small molecules targeting NRs are often deployed as therapeutics to correct aberrant NR signaling or as chemical probes to explore the role of the receptor in physiology. Nearly half of NRs do not have specific cognate ligands (termed orphan NRs) and it's unclear if they possess ligand dependent activities.

View Article and Find Full Text PDF

Obesity and rheumatic disease are mechanistically linked via chronic inflammation. The orphan receptor TREM-1 (triggering receptor expressed on myeloid cells-1) is a potent amplifier of proinflammatory and noninfectious immune responses. Here, we show that the pan modulator SR1903 effectively blocks TREM-1 activation.

View Article and Find Full Text PDF

Irisin is secreted by muscle, increases with exercise, and mediates certain favorable effects of physical activity. In particular, irisin has been shown to have beneficial effects in adipose tissues, brain, and bone. However, the skeletal response to exercise is less clear, and the receptor for irisin has not been identified.

View Article and Find Full Text PDF

CRISPR-Cas endonucleases directed against foreign nucleic acids mediate prokaryotic adaptive immunity and have been tailored for broad genetic engineering applications. Type VI-D CRISPR systems contain the smallest known family of single effector Cas enzymes, and their signature Cas13d ribonuclease employs guide RNAs to cleave matching target RNAs. To understand the molecular basis for Cas13d function and explain its compact molecular architecture, we resolved cryoelectron microscopy structures of Cas13d-guide RNA binary complex and Cas13d-guide-target RNA ternary complex to 3.

View Article and Find Full Text PDF

Thymidylate Synthase (TSase) is a highly conserved enzyme that catalyzes the production of the DNA building block thymidylate. Structurally, functionally and mechanistically, bacterial and mammalian TSases share remarkable similarities. Because of this closeness, bacterial enzymes have long been used as model systems for human TSase.

View Article and Find Full Text PDF

N-Acyl amino acids directly bind mitochondria and function as endogenous uncouplers of UCP1-independent respiration. We found that administration of N-acyl amino acids to mice improves glucose homeostasis and increases energy expenditure, indicating that this pathway might be useful for treating obesity and associated disorders. We report the full account of the synthesis and mitochondrial uncoupling bioactivity of lipidated N-acyl amino acids and their unnatural analogues.

View Article and Find Full Text PDF

Thymidylate synthase (TSase) catalyzes the biosynthesis of thymidylate, a precursor for DNA, and is thus an important target for chemotherapeutics and antibiotics. Two sequential C-H bond cleavages catalyzed by TSase are of particular interest: a reversible proton abstraction from the 2'-deoxy-uridylate substrate, followed by an irreversible hydride transfer forming the thymidylate product. QM/MM calculations of the former predicted a mechanism where the abstraction of the proton leads to formation of a novel nucleotide-folate intermediate that is not covalently bound to the enzyme (Wang, Z.

View Article and Find Full Text PDF

Thymidylate synthase (TSase) catalyzes the intracellular de novo formation of thymidylate (a DNA building block) in most living organisms, making it a common target for chemotherapeutic and antibiotic drugs. Two mechanisms have been proposed for the rate-limiting hydride transfer step in TSase catalysis: a stepwise mechanism in which the hydride transfer precedes the cleavage of the covalent bond between the enzymatic cysteine and the product and a mechanism where both happen concertedly. Striking similarities between the enzyme-bound enolate intermediates formed in the initial and final step of the reaction supported the first mechanism, while QM/MM calculations favored the concerted mechanism.

View Article and Find Full Text PDF