Publications by authors named "Timothy Shafer"

The workshop titled State of the Science on Assessing Developmental Neurotoxicity Using New Approach Methods was co-organized by University of Maryland's Joint Institute for Food Safety and Applied Nutrition (JIFSAN) and the U.S. Food and Drug Administration's (FDA) Center for Food Safety and Applied Nutrition (CFSAN; now called the Human Foods Program), and was hosted by FDA in College Park, MD on November 14-15, 2023.

View Article and Find Full Text PDF

The increasing prevalence of neurodevelopmental disorders has highlighted the need for improved testing methods to determine developmental neurotoxicity (DNT) hazard for thousands of chemicals. This paper proposes the integration of organoid intelligence (OI); leveraging brain organoids to study neuroplasticity into the DNT testing paradigm. OI brings a new approach to measure the impacts of xenobiotics on plasticity mechanisms - a critical biological process that is not adequately covered in current DNT assays.

View Article and Find Full Text PDF

The US EPA's Toxicity Forecaster (ToxCast) is a suite of high-throughput in vitro assays to screen environmental toxicants and predict potential toxicity of uncharacterized chemicals. This work examines the relevance of ToxCast assay intended gene targets to putative molecular initiating events (MIEs) of neurotoxicants. This effort is needed as there is growing interest in the regulatory and scientific communities about developing new approach methodologies (NAMs) to screen large numbers of chemicals for neurotoxicity and developmental neurotoxicity.

View Article and Find Full Text PDF

New approach methodologies (NAMs) can address information gaps on potential neurotoxicity or developmental neurotoxicity hazard for data-poor chemicals. Two assays have been previously developed using microelectrode arrays (MEA), a technology which measures neural activity. The MEA acute network function assay (AcN) uses dissociated rat cortical cells cultured at postnatal day 0 and evaluates network activity during a 40-minute chemical exposure on day in vitro (DIV)13 or 15.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are widely used, and their fluorinated state contributes to unique uses and stability but also long half-lives in the environment and humans. PFAS have been shown to be toxic, leading to immunosuppression, cancer, and other adverse health outcomes. Only a small fraction of the PFAS in commerce have been evaluated for toxicity using in vivo tests, which leads to a need to prioritize which compounds to examine further.

View Article and Find Full Text PDF

Exposure to environmental chemicals can impair neurodevelopment, and oligodendrocytes may be particularly vulnerable, as their development extends from gestation into adulthood. However, few environmental chemicals have been assessed for potential risks to oligodendrocytes. Here, using a high-throughput developmental screen in cultured cells, we identified environmental chemicals in two classes that disrupt oligodendrocyte development through distinct mechanisms.

View Article and Find Full Text PDF

There is a need to assess compounds reliably and quickly for neurotoxicity (NT) and developmental neurotoxicity (DNT). Adverse outcome pathways (AOPs) enable the mapping of molecular events to an apical endpoint in a chemical agnostic manner and have begun to be applied in NT and DNT testing frameworks. We assessed the status of NT/DNT AOPs in the AOP-Wiki (ca.

View Article and Find Full Text PDF

Microelectrode array (MEA) technology is a neurophysiological method that allows for the measurement of spontaneous or evoked neural activity to determine chemical effects thereon. Following assessment of compound effects on multiple endpoints that evaluate network function, a cell viability endpoint in the same well is determined using a multiplexed approach. Recently, it has become possible to measure electrical impedance of cells attached to the electrodes, where greater impedance indicates greater number of cells attached.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are a diverse set of commercial chemicals widely detected in humans and the environment. However, only a limited number of PFAS are associated with epidemiological or experimental data for hazard identification. To provide developmental neurotoxicity (DNT) hazard information, the work herein employed DNT new approach methods (NAMs) to generate screening data for a set of 160 PFAS.

View Article and Find Full Text PDF

Exposure to environmental chemicals can impair neurodevelopment. Oligodendrocytes that wrap around axons to boost neurotransmission may be particularly vulnerable to chemical toxicity as they develop throughout fetal development and into adulthood. However, few environmental chemicals have been assessed for potential risks to oligodendrocyte development.

View Article and Find Full Text PDF

To date, approximately 200 chemicals have been tested in US Environmental Protection Agency (EPA) or Organization for Economic Co-operation and Development (OECD) developmental neurotoxicity (DNT) guideline studies, leaving thousands of chemicals without traditional animal information on DNT hazard potential. To address this data gap, a battery of in vitro DNT new approach methodologies (NAMs) has been proposed. Evaluation of the performance of this battery will increase the confidence in its use to determine DNT chemical hazards.

View Article and Find Full Text PDF

Neurotoxicology is the study of adverse effects on the structure or function of the developing or mature adult nervous system following exposure to chemical, biological, or physical agents. The development of more informative alternative methods to assess developmental (DNT) and adult (NT) neurotoxicity induced by xenobiotics is critically needed. The use of such alternative methods including approaches that predict DNT or NT from chemical structure (e.

View Article and Find Full Text PDF

DL-glufosinate ammonium (DL-GLF) is a registered herbicide for which a guideline Developmental Neurotoxicity (DNT) study has been conducted. Offspring effects included altered brain morphometrics, decreased body weight, and increased motor activity. Guideline DNT studies are not available for its enriched isomers L-GLF acid and L-GLF ammonium; conducting one would be time consuming, resource-intensive, and possibly redundant given the existing DL-GLF DNT.

View Article and Find Full Text PDF

In vivo developmental neurotoxicity (DNT) testing is resource intensive and lacks information on cellular processes affected by chemicals. To address this, DNT new approach methodologies (NAMs) are being evaluated, including: the microelectrode array neuronal network formation assay; and high-content imaging to evaluate proliferation, apoptosis, neurite outgrowth, and synaptogenesis. This work addresses 3 hypotheses: (1) a broad screening battery provides a sensitive marker of DNT bioactivity; (2) selective bioactivity (occurring at noncytotoxic concentrations) may indicate functional processes disrupted; and, (3) a subset of endpoints may optimally classify chemicals with in vivo evidence for DNT.

View Article and Find Full Text PDF

Development of in vitro new approach methodologies has been driven by the need for developmental neurotoxicity (DNT) hazard data on thousands of chemicals. The network formation assay characterizes DNT hazard based on changes in network formation but provides no mechanistic information. This study investigated nervous system signaling pathways and upstream physiological regulators underlying chemically induced neural network dysfunction.

View Article and Find Full Text PDF

Assessment of neuroactive effects of chemicals in cell-based assays remains challenging as complex functional tissue is required for biologically relevant readouts. Recent in vitro models using rodent primary neural cultures grown on multielectrode arrays allow quantitative measurements of neural network activity suitable for neurotoxicity screening. However, robust systems for testing effects on network function in human neural models are still lacking.

View Article and Find Full Text PDF

Characterization of potential chemical-induced developmental neurotoxicity (DNT) hazard is considered for risk assessment purposes by many regulatory sectors. However, due to test complexity, difficulty in interpreting results and need of substantial resources, the use of the in vivo DNT test guidelines has been limited and animal data on DNT are scarce. To address challenging endpoints such as DNT, the Organisation for Economic Co-Operation and Development (OECD) chemical safety program has been working lately toward the development of integrated approaches for testing and assessment (IATA) that rely on a combination of multiple layers of data (e.

View Article and Find Full Text PDF

The Hard-Soft Acid and Base hypothesis can be used to predict the potential bio-reactivity (electrophilicity) of a chemical with intracellular proteins, resulting in neurotoxicity. Twelve chemicals predicted to be neurotoxic were evaluated in vitro in rat dorsal root ganglia (DRG) for effects on cytotoxicity (%LDH), neuronal structure (total neurite length/neuron, NLPN), and neurophysiology (mean firing rate, MFR). DRGs were treated acutely on days in vitro (DIV) 7 (1-100 μM) with test chemical; %LDH and NLPN were measured after 48 h.

View Article and Find Full Text PDF

The US Environmental Protection Agency's ToxCast program has generated toxicity data for thousands of chemicals but does not adequately assess potential neurotoxicity. Networks of neurons grown on microelectrode arrays (MEAs) offer an efficient approach to screen compounds for neuroactivity and distinguish between compound effects on firing, bursting, and connectivity patterns. Previously, single concentrations of the ToxCast Phase II library were screened for effects on mean firing rate (MFR) in rat primary cortical networks.

View Article and Find Full Text PDF

In this manuscript, which appeared in ALTEX 35 , 306-352 ( doi:10.14573/altex.1712081 ), the Acknowledgements should read: This work was supported by the Doerenkamp-Zbinden Foundation, EFSA, the BMBF, JPI-NutriCog-Selenius, and it has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No.

View Article and Find Full Text PDF

Neurotoxicity can be defined by the ability of a drug or chemical to alter the physiology, biochemistry, or structure of the nervous system in a manner that may negatively impact the health or function of the individual. Electrophysiological approaches have been utilized to study the mechanisms underlying neurotoxic actions of drugs and chemicals for over 50 years, and in more recent decades, high-throughput patch-clamp approaches have been utilized by the pharmaceutical industry for drug development. The use of microelectrode array recordings to study neural network electrophysiology is a relatively newer approach, with commercially available systems becoming available only in the early 2000s.

View Article and Find Full Text PDF

The U.S. Environmental Protection Agency (EPA) is faced with the challenge of efficiently and credibly evaluating chemical safety often with limited or no available toxicity data.

View Article and Find Full Text PDF

Thousands of chemicals to which humans are potentially exposed have not been evaluated for potential developmental neurotoxicity (DNT), driving efforts to develop a battery of in vitro screening approaches for DNT hazard. Here, 136 unique chemicals were evaluated for potential DNT hazard using a network formation assay (NFA) in cortical cells grown on microelectrode arrays. The effects of chemical exposure from 2 h postplating through 12 days in vitro (DIV) on network formation were evaluated at DIV 5, 7, 9, and 12, with cell viability assessed at DIV 12.

View Article and Find Full Text PDF

The Organisation for Economic Co-Operation and Development (OECD) coordinates international efforts to enhance developmental neurotoxicity (DNT) testing. In most regulatory sectors, including the ones dealing with pesticides and industrial chemicals registration, historical use of the in vivo DNT test guideline has been limited. Current challenges include a lack of DNT data and mechanistic information for thousands of chemicals, and difficulty in interpreting results.

View Article and Find Full Text PDF